强化学习是人工智能领域中的一个研究热点。在求解强化学习问题时,传统的最小二乘法作为一类特殊的函数逼近学习方法,具有收敛速度快、充分利用样本数据的优势。通过对最小二乘时序差分算法(Least-Squares Temporal Difference,LSTD)的研究与分析,并以该方法为基础提出了双权重最小二乘Sarsa算法(Double Weights With Least Squares Sarsa,DWLS-Sarsa)。DWLS-Sarsa算法将两权重通过一定方式进行关联得到目标权重,并利用Sarsa方法对时序差分误差进行控制。在算法训练过程中,两权重会因为更新样本的不同而产生不同的值,保证了算法可以有效地进行探索;两权重也会因为样本数据的分布而逐渐缩小之间的差距直到收敛至同一最优值,确保了算法的收敛性能。最后将DWLS-Sarsa算法与其他强化学习算法进行实验对比,结果表明DWLS-Sarsa算法具有较优的学习性能与鲁棒性,可以有效地处理局部最优问题并提高算法收敛时的表现效果。
连续控制问题一直是强化学习研究的一个重要方向.近些年深度学习的发展以及确定性策略梯度(deterministic policy gradients, DPG)算法的提出,为解决连续控制问题提供了很多好的思路.这类方法大多在动作空间中加入外部噪声源进行探索,但是它们在一些连续控制任务中的表现并不是很好.为更好地解决探索问题,提出了一种基于经验指导的深度确定性多行动者评论家算法(experience-guided deep deterministic actor-critic with multi-actor, EGDDAC-MA),该算法不需要外部探索噪声,而是从自身优秀经验中学习得到一个指导网络,对动作选择和值函数的更新进行指导.此外,为了缓解网络学习的波动性,算法使用多行动者评论家模型,模型中的多个行动者网络之间互不干扰,各自执行情节的不同阶段.实验表明:相比于DDPG,TRPO和PPO算法,EGDDAC-MA算法在GYM仿真平台中的大多数连续任务中有更好的表现.
暂无评论