为解决LDAG(DAG Algorithm Based on Linear Threshold)算法在处理关于社会网络影响力最大化过程中,优先考虑网络影响力传播模型、忽视社会网络的拓扑结构问题,利用社交网络社区的结构,有针对性地选择影响力传播的关键节点,对LDAG算法...
详细信息
为解决LDAG(DAG Algorithm Based on Linear Threshold)算法在处理关于社会网络影响力最大化过程中,优先考虑网络影响力传播模型、忽视社会网络的拓扑结构问题,利用社交网络社区的结构,有针对性地选择影响力传播的关键节点,对LDAG算法进行了改进。利用关键节点简化了有向无环图的构造过程,保证了其高精度与运行效率高的特点,同时也优化了算法的时间复杂度和空间复杂度。通过两个有效的实验数据集对算法进行验证,结果表明改进的算法可以大幅度降低算法的运行时间,且对算法的精度影响很小。
复杂网络中内部的社区结构是复杂网络结构特征和属性特征的具体体现。首先依据模块度最大化理论计算网络的模块度矩阵的最大k特征向量矩阵;然后提出聚类中心方法,并用于求出k个社团的重要结点作为k聚类中心,利用欧几里得距离计算每一个结点到k个聚类中心的距离,将结点分配到距离聚类中心最近的社区中;最后对网络应用k-means方法进行迭代计算,得到k个社区的划分。分别在Karate Club Network和American College Football数据集上对算法进行了实验验证,实验结果表明该算法可以有效发现潜在社区,其纯度与模块度比已有的社区发现算法都有一定的提高,并且迭代次数较少,效率较高。
暂无评论