针对无人机视角下的目标存在多尺度、目标小、被遮挡与背景复杂等问题,提出了一种基于动态样本注意力尺度序列的YOLOv8改进算法BDAD-YOLO。通过引入BiFormer的思想来改造原模型骨干结构,提高模型对关键信息的关注度,更好地保留目标细粒度细节信息。由于目标存在大小、位置等多变性,传统卷积并不能很好地处理这一情况,因此基于DCN(deformable convolutional network)的思想,设计了一种可以增强对小目标特征提取的C2_DCf模块,从而进一步提高颈部网络中小目标层对特征信息的融合。提出一种基于动态样本的注意力尺度序列融合框架AFD(attention-scale sequence fusion framework based on dynamic samples),使用轻量化动态点采样并通过融合不同尺度的特征图来增强网络提取多尺度信息的能力。使用WIoU损失函数,改善小目标低质量数据对梯度的不利影响,以加快网络收敛速度。实验结果表明,在VisDrone数据集中的val集与test集上平均精度(mAP@0.5)分别提升了4.6个百分点、3.7个百分点,在DOTA数据集上平均精度(mAP@0.5)提升了2.4个百分点,证明了改进算法的有效性和普适性。
针对多形性腺瘤诊断完全依赖人工的问题,提出一种计算机辅助诊断方法.先通过采集数据并构建多形性腺瘤数据集,对当前稠密连接网络进行改进并融合通道注意力机制进行疾病组织分类特征提取,得到组织类别和概率,然后使用CART(classification and regression tree)进行推理学习,得到诊断结果.对难判断的类别选择进行人工辅助,进而实现对多形性腺瘤疾病的计算机辅助工作.实验结果表明,该方法在分类识别模块分类提取准确率达97.7%,决策树推理诊断准确率达100%.此外,分类识别模块在血细胞分类领域的准确率达98.6%.该方法具有一定的迁移性和有效性.
暂无评论