自动知识抽取方法可以自动识别并抽取Web文档中与本体匹配的事实知识。利用这些事实知识既可以构建基于知识的服务,也能够为语义Web的实现提供必要的语义数据。但面向自然语言特别是中文自然语言的自动知识抽取非常困难.提出了基于语义Web理论和中文自然语言处理(natural language processing,NLP)技术的自动知识抽取新方法AKE,用聚集体知识概念刻画N元关系知识,能够在不使用大规模语言知识库和同义词表的情况下自动识别中文自然语言文档内容中显式和隐含的简单事实知识和N元关系复杂事实知识.实验结果表明该方法优于目前已知的其他方法.
在基于模型诊断中,诊断解通常是根据极小冲突集合簇进行相应的计算得到所有的极小碰集,所以提高极小碰集的求解效率是模型诊断的核心问题.因此提出结合基于元素覆盖集合度(degree of element coverage,DOEC)极小化策略的SAT求解极小碰...
详细信息
在基于模型诊断中,诊断解通常是根据极小冲突集合簇进行相应的计算得到所有的极小碰集,所以提高极小碰集的求解效率是模型诊断的核心问题.因此提出结合基于元素覆盖集合度(degree of element coverage,DOEC)极小化策略的SAT求解极小碰集的方法 SAT-MHS(satisfiability problemminimal hitting sets).首先,方法SAT-MHS将碰集求解问题转换成SAT问题,即把所有的冲突集合以子句形式表示成SAT的输入CNF进行迭代求解.其次,提出比现有的基于子超集检测极小化策略(sub-superset detecting minimization,SSDM)更为高效的DOEC极小化策略进行极小化处理.由实验数据可见,与SSDM极小化策略相比,其优点是缩减了求解空间和迭代求解次数,尤其当求解规模较大问题时,其极小化效率越高.主要是因为其极小化不会随着待求解问题规模的增加而增加,而是只与冲突集合簇的大小相关,因此时间复杂度较低.实验结果表明,对于一些较大的实例,与目前效率最好的Boolean方法相比,SAT-MHS方法高效且易于实现,求解速度能提高10~20倍,DOEC极小化策略对比传统SSDM极小化策略能达到40倍左右.
为了刻画和处理半结构化数据的含糊、不确定性问题,针对这类半结构化数据模型中所蕴含的组成结构和内容信息,扩展了传统的粗糙集模型,提出了一种基于标签树的粗糙集模型LTRS(labelled tree rough set model)。利用标签树的结构和内容,...
详细信息
为了刻画和处理半结构化数据的含糊、不确定性问题,针对这类半结构化数据模型中所蕴含的组成结构和内容信息,扩展了传统的粗糙集模型,提出了一种基于标签树的粗糙集模型LTRS(labelled tree rough set model)。利用标签树的结构和内容,重新定义了等价关系、不可区分关系、上、下近似集合等粗糙集基本概念。进一步描述了区分矩阵和决策规则,并且以某地区的流行性乙型脑炎个案XML调查表组成的标签树信息系统为例,依据定义给出了决策规则的抽取,所产生的规则可用于指导乙型脑炎的临床分型。
暂无评论