随着GPS设备(如智能手机、GPS导航仪、GPS记录仪等)的广泛应用,其产生的位置信息也越来越多。基于位置的社交网络(Location-Based Social Networks,LBSNs)推荐系统受到了更多的关注。旅游行程推荐是LBSNs中非常热门的研究课题之一,但是...
详细信息
随着GPS设备(如智能手机、GPS导航仪、GPS记录仪等)的广泛应用,其产生的位置信息也越来越多。基于位置的社交网络(Location-Based Social Networks,LBSNs)推荐系统受到了更多的关注。旅游行程推荐是LBSNs中非常热门的研究课题之一,但是现有研究主要侧重向单个用户推荐旅游行程,缺乏向群体推荐行程的工作。因此提出了一种LBSNs中的群体行程推荐方法。该方法首先根据用户的签到记录,使用K-means和谱聚类方法挖掘用户群体及其偏好;然后综合考虑群体对行程的时间和价格的约束,设计了行程推荐算法向群体用户推荐符合其偏好的旅游行程;最后,使用新浪微博用户的真实签到记录进行实验分析,结果表明所提出的群体行程推荐方法具有良好效果。
传统的主曲线算法在小规模数据集上能获得良好的效果,但单节点的计算和存储能力都不能满足海量数据主曲线的提取要求,而算法分布式并行化是目前解决该类问题最有效的途径之一。本文提出基于MapReduce框架的分布式软K段主曲线算法(Distributed soft k-segments principal curve,DisSKPC)。首先,基于分布式K-Means算法,采用递归粒化方法对数据集进行粒化,以确定粒的大小并保证粒中数据的关联性。然后调用软K段主曲线算法计算每个粒数据的局部主成分线段,并提出用噪声方差来消除在高密集、高曲率的数据区域可能产生的过拟合线段。最后借助哈密顿路径和贪婪算法连接这些局部主成分线段,形成一条通过数据云中间的最佳曲线。实验结果表明,本文所提出的DisSKPC算法具有良好的可行性和扩展性。
暂无评论