boosting算法起源于PAC(probably approximately correct)学习模型,由Schapire在1990年首次提出,是一种基于一系列基础分类器的组合分类模型算法,基础分类器可以选择任意一种弱分类模型(如决策树)。随后,Freund和Schapire在此基础上...
详细信息
boosting算法起源于PAC(probably approximately correct)学习模型,由Schapire在1990年首次提出,是一种基于一系列基础分类器的组合分类模型算法,基础分类器可以选择任意一种弱分类模型(如决策树)。随后,Freund和Schapire在此基础上于1995年提出了著名的Adaboost算法.
暂无评论