为了研究双足机器人在单腿支撑阶段和飞行阶段质心轨迹和双足轨迹,采用模糊CMAC(fuzzy cerebellar model articulation controller,FCMAC)神经网络规划双足机器人跑步时质心和双足的方法。通过FCMAC神经网络学习生成跑步轨迹,仿真实验...
详细信息
为了研究双足机器人在单腿支撑阶段和飞行阶段质心轨迹和双足轨迹,采用模糊CMAC(fuzzy cerebellar model articulation controller,FCMAC)神经网络规划双足机器人跑步时质心和双足的方法。通过FCMAC神经网络学习生成跑步轨迹,仿真实验结果表明:双足机器人跑步时各关节角度和关节驱动力矩变化稳定,能够实现稳定的跑步,验证了方法的有效性。
提出一种新的面向复杂网络大数据的重叠社区检测算法DOC(detecting overlapping communities over complex network big data),时间复杂度为O(nlog2(n)),算法基于模块度聚类和图计算思想,应用新的节点和边的更新方法,利用平衡二叉树对...
详细信息
提出一种新的面向复杂网络大数据的重叠社区检测算法DOC(detecting overlapping communities over complex network big data),时间复杂度为O(nlog2(n)),算法基于模块度聚类和图计算思想,应用新的节点和边的更新方法,利用平衡二叉树对模块度增量建立索引,基于模块度最优的思想设计一种新的重叠社区检测算法.相对于传统的重叠节点检测算法,对每个节点分析的频率大为降低,可以在较低的算法运行时间下获得较高的识别准确率.复杂网络大数据集上的算法测试结果表明:DOC算法能够有效地检测出网络重叠社区,社区识别准确率较高,在大规模LFR基准数据集上其重叠社区检测标准化互信息指标NMI最高能达到0.97,重叠节点检测指标F-score的平均值在0.91以上,且复杂网络大数据下的运行时间明显优于传统算法.
随着社交网络服务的快速发展及增长,理解网络用户之间潜在的影响力的传播过程,能够帮助用户更好地理解网络结构的动态演化,以及不同的信息对于人与人之间社会关系的影响作用.现有的影响力传播相关的研究工作主要集中在给定静态社交网络结构,分析用户之间的影响力传播,找出最具有影响力的用户子集.然而大部分已有工作都忽略了社交网络中的内容信息,即用户之间的影响力作用是与用户产生内容紧密相关的.该文提出了一种融合内容信息和社交网络动态时间特性的潜在影响力传播模型InfoIBP(Influence propagation on Indian Buffet Process).网络中有影响力的用户被看作是一种潜在的特征,可通过不同采样算法和数值逼近求解出来.而对于网络动态时间特性,借助于隐马尔可夫模型来建模不同时间步上的影响力传播过程.在数据集DBLP和Digg上的一系列链接预测、偏好预测和运行时间评测等实验,证明了所提InfoIBP模型能够更准确地建模潜在的影响力传播过程,更有效地挖掘出社交网络中的有影响力用户及更全面地描述网络的动态时间特性,并能对未来的观测数据做出相对精准的预测.
暂无评论