针对睡眠多导图中各模态信息在睡眠各阶段存在差异性,而导致特征利用不充分的问题,本文提出了一种基于通道注意力机制和多模态门控机制的睡眠分期模型。首先利用残差收缩网络设计各模态特征提取网络用于提取各模态特征,并在通道维度上进行拼接融合,利用通道注意力机制进一步对融合特征进行重标定得到睡眠多导图的时不变特征;之后提出了一种基于自适应门控机制的多模态门控模块,对各模态特征及时不变特征按照重要程度进行加权融合,实现特征融合;最后利用双向长短时记忆网络提取睡眠多导图的时序特征。实验结果表明,本文提出的睡眠分期模型在欧洲数据格式睡眠数据集(sleep-European data format, sleep-EDF)上准确率为87.6%,M_(F1)为82.0%,取得了目前最好的分期效果。
传统的C4.5分类决策树作为数据分类算法具有计算简单、准确率高的优势,由于飞机具有参数多和数据量大的因素,C4.5算法需要对连续属性值进行多次顺序扫描,分类时间效率较低。针对此问题,提出近似粗糙集和决策分辨力分类算法,利用粗糙集近似度来判断属性划分样本数据能力,并将其代入到决策分辨力算法中,以决策分辨力最大的属性作为分裂特征建立分类决策树。算法在保证分类决策准确率的同时,提高计算效率并减少过拟合问题的产生。通过对UCI(University of California, Irvine)数据集上多组数据样本的对比实验分析,验证了本文提出PSRP(rough set and resolving power)的算法在保证相同准确率的情况下,平均计算时间效率提升约10%,可靠性提升2%。
针对在现有人脸静态识别过程中被识别人需等待配合的问题,文中提出了一种动态人脸识别系统。该系统采用了基于RetinaFace与FaceNet算法的动态人脸检测和识别方法,并进行了优化,以达到高识别精度和实时性的目标。其中,RetinaFace检测采用GhostNet作为骨干网络,使用Adaptive-NMS(Non Max Suppression)非极大值抑制用于人脸框的回归,FaceNet识别采用MobileNetV1作为骨干网络,使用Triplet损失与交叉熵损失结合的联合损失函数用以人脸分类。优化后的算法在检测与识别上具有良好表现,改进RetinaFace算法在WiderFace数据集下检测精度为93.35%、90.84%和80.43%,FPS(Frames Per Second)可达53 frame·s^(-1)。动态人脸检测平均检测精度为96%,FPS为21 frame·s^(-1)。当FaceNet阈值设为1.15时,识别率最高达到98.23%。动态识别系统平均识别精度98%,FPS可达20 frame·s^(-1)。实验结果表明,该系统解决了人脸静态识别中需等待配合的问题,具有较高的识别精度与实时性。
暂无评论