为了提高重构相干信号测向算法的估计性能,降低算法运算量,提出了一种基于矩阵重构和酉变换方法的酉矩阵重构算法。该算法首先通过酉变换将阵列接收数据从复值计算转换为实值计算,使计算量大大降低;然后计算阵列协方差矩阵并进行特征值分解得到信号子空间,再将信号子空间重构为Toeplitz矩阵实现解相干并再次进行酉变换;最后通过特征值分解得到信号子空间并使用最小二乘法实现波达方向(direction of arrival,DOA)估计。相比于改进的旋转不变性的信号参数(estimation of signal parameters via rotational invariance techniques-like,ESPRIT-Like)算法和空间平滑处理算法,由于消除了噪声影响、构造了Toeplitz矩阵以及充分利用了数据的共轭信息,该算法的估计精度更高、具有更高的运算效率且在ESPRIT-Like算法失效的条件下新算法仍能有效估计DOA。本文算法的运行时间是ESPRIT-Like算法的71.2%,实验结果证明了该方法的有效性和真实性。
为解决毫米波雷达在对多目标跟踪时目标近邻聚类失败导致的目标数目低估和跟踪精度下降问题,提出一种基于概率假设密度(probability hypothesis density,PHD)滤波器的量测集联合划分方法。利用带噪声密度空间聚类(density based spatial...
详细信息
为解决毫米波雷达在对多目标跟踪时目标近邻聚类失败导致的目标数目低估和跟踪精度下降问题,提出一种基于概率假设密度(probability hypothesis density,PHD)滤波器的量测集联合划分方法。利用带噪声密度空间聚类(density based spatial clustering of applications with noise,DBSCAN)算法对采集到的量测集进行初步划分。通过PHD滤波器的预测值判断初步划分的点云簇是否存在重叠簇。针对重叠簇,利用滤波器预测值改进高斯混合模型(Gaussian mixed model,GMM)聚类算法并进行子划分。在仿真和实际环境中进行算法测试,仿真结果表明,所提算法能正确划分并跟踪近邻的目标,相比其他算法具有更好的跟踪精度。实测结果进一步验证了该算法能够成功识别近邻目标数量并跟踪,具有一定的工程实践意义。
为了减小低快拍数和低信噪比下采样协方差矩阵误差,并降低其运算复杂度,提出了一种基于实数化的均匀圆阵采样协方差矩阵重构方法。针对均匀圆阵的特点,通过组建特殊的基向量,构成特殊的重构矩阵。通过将采样协方差矩阵实数化,进一步降低了重构矩阵的复杂度。考虑到多通道不一致性对重构矩阵的影响,引入0位校正算法,提高了重构方法的稳健性。最后应用重构后的协方差矩阵进行子空间类波达方向估计(direction of arrival,DOA)。实验仿真证明,该特殊重构矩阵在实数化下与原矩阵重构能力相同;当快拍数为100、信噪比为0 dB时,双信源分辨力较重构前由74%提高到95%以上;理论重构运算复杂度降低到原来的53.99%。
暂无评论