隐私保护真值发现技术在移动群智感知网络领域中受到了广泛关注.然而在实际应用中,恶意用户上传的异常值对真值发现结果的可靠性带来了较大影响.为此,提出了一种基于区间验证的隐私保护真值发现算法IVPPTD (Interval Verification based Privacy-Preserving Truth Discovery).首先,采用Paillier同态加密方法实现用户感知数据的安全上传和真值发现,保护用户的感知数据、权重信息以及估算真值的隐私不被泄露.其次,提出一种密文域中的异常数据过滤算法,对数据约束区间外的异常值进行数据清洗,从而在保护用户敏感信息不被泄露的前提下,提高真值发现结果的可靠性.最后,基于感知平台和密钥生成中心协作完成真值发现过程,减少了用户与云服务器之间的通信开销.仿真实验结果表明,所提方法具有高准确率、对异常值的鲁棒性以及较低的计算开销.
针对红外与可见光图像融合中的颜色失真和热目标细节丢失问题,提出基于融合曲线的零样本红外与可见光图像融合方法(Zero-Shot Infrared and Visible Image Fusion Based on Fusion Curve,ZSFuCu).首先,将融合任务转化为基于深度网络的...
详细信息
针对红外与可见光图像融合中的颜色失真和热目标细节丢失问题,提出基于融合曲线的零样本红外与可见光图像融合方法(Zero-Shot Infrared and Visible Image Fusion Based on Fusion Curve,ZSFuCu).首先,将融合任务转化为基于深度网络的图像特定曲线估计过程,通过像素级非线性映射实现热目标纹理的增强与色彩特征的保留.然后,设计多维度视觉感知损失函数,从对比度增强、颜色保持及空间连续性三个维度构建约束机制,协同优化融合图像的高频信息与色彩分布,保留结构特征和关键信息.最后,采用零样本训练策略,仅需单个红外与可见光图像对即可完成参数的自适应优化,具备在不同照明条件下融合的强鲁棒性.实验表明,ZSFuCu在目标突出性、细节丰富度及颜色自然度方面具有显著优势,兼具有效性与实用性.
针对中医问诊领域数据规模大,以及医生在问诊中主观性强、数据对齐难的问题,提出了一种中医问答领域的大语言模型ChatTCM。利用大语言模型(large language model,LLM)在处理自然语言理解与文本生成方面的强大能力,通过对大语言模型进行...
详细信息
针对中医问诊领域数据规模大,以及医生在问诊中主观性强、数据对齐难的问题,提出了一种中医问答领域的大语言模型ChatTCM。利用大语言模型(large language model,LLM)在处理自然语言理解与文本生成方面的强大能力,通过对大语言模型进行微调,使LLM具有在中医问答领域的专业知识和能力,避免模型在生成时出现幻觉的现象。提取中医书籍中的三元组信息,构建中医知识图谱数据库,实现中医知识的数据对齐与系统化整合,并为大语言模型生成答案提供背景知识;结合思维链(chain-of-thought,COT)与知识图谱数据库的动态交互,生成客观的推理过程,确保诊疗建议具有科学依据;把思维链与知识图谱的推理结果作为新知识进行存储,从而不断扩展本地知识库。与中医领域的HuaTuoGPT模型对比实验表明,ChatTCM模型在MedChatZH数据集上BLEU-4和ROUGE-L的评测指标分别提高了10.6和10.5个百分点,并且在已开源的数据集上准确度达到了70%,比同类型的MedChatZH模型提升了10个百分点。
暂无评论