目的红外图像在工业中发挥着重要的作用。但是由于技术原因,红外图像的分辨率一般较低,限制了其普遍适用性。许多低分辨率红外传感器都和高分辨率可见光传感器搭配使用,一种可行的思路是利用可见光传感器捕获的高分辨率图像,辅助红外图像进行超分辨率重建。方法本文提出了一种使用高分辨率可见光图像引导红外图像进行超分辨率的神经网络模型,包含两个模块:引导Transformer模块和超分辨率重建模块。考虑到红外和可见光图像对一般存在一定的视差,两者之间是不完全对齐的,本文使用基于引导Transformer的信息引导与融合方法,从高分辨率可见光图像中搜索相关纹理信息,并将这些相关纹理信息与低分辨率红外图像的信息融合得到合成特征。然后这个合成特征经过后面的超分辨率重建子网络,得到最终的超分辨率红外图像。在超分辨率重建模块,本文使用通道拆分策略来消除深度模型中的冗余特征,减少计算量,提高模型性能。结果本文方法在FLIR-aligned数据集上与其他代表性图像超分辨率方法进行对比。实验结果表明,本文方法可以取得优于对比方法的超分辨率性能。客观结果上,本文方法比其他红外图像引导超分辨率方法在峰值信噪比(peak signal to noise ratio,PSNR)上高0.75 dB;主观结果上,本文方法能够生成视觉效果更加逼真、纹理更加清晰的超分辨率图像。消融实验证明了所提算法各个模块的有效性。结论本文提出的引导超分辨率算法能够充分利用红外图像和可见光图像之间的关联信息,同时获得红外图像的高质量超分辨率重建结果。
广泛应用于经典NP难问题即旅行商问题(Traveling Salesman Problem,TSP)的蚁群优化(Ant Colony Optimization,ACO)算法存在容易陷入局部最优、收敛速度慢等问题,但其采用正反馈机制并具备较强的鲁棒性,适合与其他算法相融合从而改进优化。基于此,引入人工蜂群的分级思想,提出了一种多级蚁态的蚁群改进(Multistage State Ant Colony Optimization,MSACO)算法。通过引入适应度算子将传统单蚁态蚁群划分为王蚁、被雇佣蚁和非雇佣蚁,并且在每次迭代后重新分配身份以动态维持多级蚁态。王蚁寻找最优路径即最优食物源,被雇佣蚁负责路径构建,非雇佣蚁进行局部优化。为了使非雇佣蚁更有效地获得优质解,提出了一种固定邻域优化算法。实验结果表明,在TSPLIB库的7个数据集中,MSACO均可以达到理论最优解程度,较其他改进算法的最优解迭代次数与运行时间可以减少约40%与50%。
基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)作为一种重要的多目标优化方法,已经成功地应用于解决各种多目标优化问题。然而,MOEA/D算法在解决具有高维目标和复杂帕累托前沿(Pare...
详细信息
基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)作为一种重要的多目标优化方法,已经成功地应用于解决各种多目标优化问题。然而,MOEA/D算法在解决具有高维目标和复杂帕累托前沿(Pareto frontier,PF)的问题时,容易陷入局部最优并难以获得可行解。本文提出一种改进的MOEA/D算法,包括3个优化策略:首先,使用拉丁超立方抽样方法代替随机方法初始化种群,得到分布均匀的初始种群,同时对权重向量关联解的策略进行优化;其次,提出一种稀疏度函数,用于计算种群中个体的稀疏度并维护外部种群;最后,提出了自适应调整权向量的方法,用于引导种群收敛到帕累托前沿,并且有效平衡种群的多样性和收敛性。将提出算法和4种对比算法在DTLZ和WFG系列问题以及多目标旅行商问题(multi-objective travel salesman problem,MOTSP)上进行对比实验,实验结果表明本文提出自适应调整权重向量的多目标进化(MOEA/D with cosine similarity adaptive weight adjustment,MOEA/D-CSAW)算法在处理具有复杂帕累托前沿和高维多目标的问题时,算法的综合性能要优于对比算法。
暂无评论