目的 为了更好地实现轻量化的人体姿态估计,在轻量级模型极为有限的资源下实现更高的检测性能。基于高分辨率网络(high resolution network,HRNet)提出了结合密集连接网络的轻量级高分辨率人体姿态估计网络(lightweight high-resolution human estimation combined with densely connected network,LDHNet)。方法 通过重新设计HRNet中的阶段分支结构以及提出新的轻量级特征提取模块,构建了轻量高效的特征提取单元,同时对多分支之间特征融合部分进行了轻量化改进,进一步降低模型的复杂度,最终大幅降低了模型的参数量与计算量,实现了轻量化的设计目标,并且保证了模型的性能。结果 实验表明,在MPII(Max Planck Institute for Informatics)测试集上相比于自顶向下的轻量级人体姿态估计模型LiteHRNet,LDHNet仅通过增加少量参数量与计算量,平均预测准确度即提升了1.5%,与LiteHRNet的改进型DiteHRNet相比也提升了0.9%,在COCO(common objects in context)验证集上的结果表明,与LiteHRNet相比,LDHNet的平均检测准确度提升了3.4%,与DiteHRNet相比也提升了2.3%,与融合Transformer的HRFormer相比,LDHNet在参数量和计算量都更低的条件下有近似的检测性能,在面对实际场景时LDHNet也有着稳定的表现,在同样的环境下LDHNet的推理速度要高于基线HRNet以及LiteHRNet等。结论 该模型有效实现了轻量化并保证了预测性能。
暂无评论