隐私保护真值发现技术在移动群智感知网络领域中受到了广泛关注.然而在实际应用中,恶意用户上传的异常值对真值发现结果的可靠性带来了较大影响.为此,提出了一种基于区间验证的隐私保护真值发现算法IVPPTD (Interval Verification based Privacy-Preserving Truth Discovery).首先,采用Paillier同态加密方法实现用户感知数据的安全上传和真值发现,保护用户的感知数据、权重信息以及估算真值的隐私不被泄露.其次,提出一种密文域中的异常数据过滤算法,对数据约束区间外的异常值进行数据清洗,从而在保护用户敏感信息不被泄露的前提下,提高真值发现结果的可靠性.最后,基于感知平台和密钥生成中心协作完成真值发现过程,减少了用户与云服务器之间的通信开销.仿真实验结果表明,所提方法具有高准确率、对异常值的鲁棒性以及较低的计算开销.
针对基于互学习的知识蒸馏方法中存在模型只关注教师网络和学生网络的分布差异,而没有考虑其他的约束条件,只关注了结果导向的监督,而缺少过程导向监督的不足,提出了一种拓扑一致性指导的对抗互学习知识蒸馏方法(Topology-guided adversarial deep mutual learning,TADML).该方法将教师网络和学生网络同时训练,网络之间相互指导学习,不仅采用网络输出的类分布之间的差异,还设计了网络中间特征的拓扑性差异度量.训练过程采用对抗训练,进一步提高教师网络和学生网络的判别性.在分类数据集CIFAR10、CIFAR100和Tiny-ImageNet及行人重识别数据集Market1501上的实验结果表明了TADML的有效性,TADML取得了同类模型压缩方法中最好的效果.
暂无评论