隐私保护真值发现技术在移动群智感知网络领域中受到了广泛关注.然而在实际应用中,恶意用户上传的异常值对真值发现结果的可靠性带来了较大影响.为此,提出了一种基于区间验证的隐私保护真值发现算法IVPPTD (Interval Verification based Privacy-Preserving Truth Discovery).首先,采用Paillier同态加密方法实现用户感知数据的安全上传和真值发现,保护用户的感知数据、权重信息以及估算真值的隐私不被泄露.其次,提出一种密文域中的异常数据过滤算法,对数据约束区间外的异常值进行数据清洗,从而在保护用户敏感信息不被泄露的前提下,提高真值发现结果的可靠性.最后,基于感知平台和密钥生成中心协作完成真值发现过程,减少了用户与云服务器之间的通信开销.仿真实验结果表明,所提方法具有高准确率、对异常值的鲁棒性以及较低的计算开销.
概念漂移是流数据的主要特征之一,如何检测概念漂移的发生以及调整预测模型去适应概念漂移现象备受研究者的关注.目前有关概念漂移的大多数算法仅仅针对单一类型的概念漂移检测,并且需限制输入数据服从某一分布,所以在检测多种类型概念漂移时效果不理想.提出一种在线集成自适应算法(KSHPR),在自适应随机森林(Adaptive Random Forests,ARF)算法和流随机补丁(Streaming Random Patch,SRP)算法的基础上进行优化改进,采用非参数检验与滑动窗口相结合的策略进行概念漂移检测,降低窗口平均值对算法性能的影响,并以此为基础建立四个基学习者的集成学习模型,根据基学习者预测准确率,动态分配权值,有效解决流式数据中学习模型精度低的问题.实验证明,提出的算法在真实数据集和合成数据集中均表现优良,与其他算法相比,该算法的稳定性、分类准确性与多类型概念漂移适应能力均有所提升.
暂无评论