为提升高复杂海洋环境下声呐探测距离预测的准确性和效率,文章提出一种基于改进Transformer的传播损失与声呐探测距离建模方法,该方法能够兼容复杂海洋环境下不同点位、不同方向声信号传播损失差异,能够基于声呐方程及声呐主被动工作模式,快速、有效地预测多点位多方向的声呐探测距离。以真实大区域海洋环境计算得到的传播损失数据为输入,通过将双向长短时记忆网络(bidirectional long short-term memory,Bi-LSTM)与Transformer架构中自注意力机制相结合,使得模型能够有效捕捉复杂环境变化的局部精确性和全局特征。实验结果表明,所提模型预测结果与声呐方程耦合积分方式得到的探测距离具有较好的一致性;同时计算效率提高了约1 000倍,提升了声呐性能的预报效率。
针对自然场景中文字符检测率低、小字符检测困难以及字符检测类别多样等问题,提出一种基于YOLOv2的改进方法,并将其应用于自然场景中文字符检测中.首先利用k-means++聚类算法对字符目标候选框(anchor)的数量和宽高比维度进行聚类分析,提出多层特征融合策略,对原网络中第4个最大池化层前所输出的特征图经过3×3和1×1大小的卷积核进行卷积操作,并执行4倍的下采样得到局部特征;然后对第5个最大池化层前所输出的特征图经过3×3和1×1大小的卷积核进行卷积操作,并执行2倍的下采样得到局部特征,将局部特征与全局特征融合,同时增加高层卷积中的重复卷积层,将高层卷积中连续且重复的3×3×1 024大小的卷积层数由3增加为5;最后使用Chinese text in the wild (CTW)数据集对YOLOv2和改进的YOLOv2算法进行对比实验,结果表明,改进后的YOLOv2算法在中文字符检测中平均准确率均值为78.3%,较原YOLOv2算法提升了7.3%,且明显高于其他自然场景中的文字符检测方法.
暂无评论