目的:探索基于表面等离子共振技术的抗淀粉样蛋白聚集药物的实验条件、方法。方法:制备Amyloidβ1-40与1-42单体和聚体,配制对照分析物CR/TS/TT浓度梯度(0μg/ml、7. 81μg/ml、15. 63μg/ml、31. 25μg/ml、62. 5μg/ml、125μg/ml、250μg/ml、500μg/ml)。采用CM5芯片,分别将蛋白的单体和聚体通过氨基偶联固定于芯片表面。将样品依次进样,进行亲合分析。结果:Aβ1-40与Aβ1-42单体在25℃温度下静置24 h可制备成实验用聚集体; SPR分析系统进样参数:流速30μl/min,结合时间300s,解离时间300s,再生1 m M Na OH 15s;实验优选阳性对照为CR(Congo Red)。结论:以上实验条件可用于SPR系统中抗β淀粉样蛋白聚集药物的初步筛选,实验方法稳定,结果可信。
目的:探索Microtox技术应用于红花注射液综合毒性检测。方法:以费氏弧菌为测试菌种,通过方法学考察确定最优检测体系及方法学可靠性;在最优检测体系条件下,对不同生产厂家所生产的红花注射液进行了发光菌综合毒性检测。结果:2 m L反应...
详细信息
目的:探索Microtox技术应用于红花注射液综合毒性检测。方法:以费氏弧菌为测试菌种,通过方法学考察确定最优检测体系及方法学可靠性;在最优检测体系条件下,对不同生产厂家所生产的红花注射液进行了发光菌综合毒性检测。结果:2 m L反应体系下,最优复苏液体积0.9 m L/支菌,每个待测样品加入最优的菌液体积50μL,最优检测时间10 min,最优p H范围5-10,且10 min时发光强度以80-120万为宜;重复性试验、中间精密度试验的相对标准偏差均小于15%;不同生产厂家A、B、C成品的EC50平均值分别为3.36%、5.58%、4.33%,具有显著性差异(P<0.05)。结论:红花注射液对费氏弧菌的毒性存在显著的浓度-效应关系,且不同生产厂家(包括原研单位在内)之间成品EC50值具有显著性差异,提示红花注射液成品生物学检测标准存在进一步提升的空间,应用Microtox技术检测红花注射液综合毒性并用于控制不同厂家成品质量的波动具有很好的应用前景。
目的:开发一项新的检测技术——Microtox技术,以用于参麦注射液的综合毒性检测。方法:以费氏弧菌为测试菌种,通过方法学考察确定最优检测体系及方法学可靠性;在最优检测体系条件下,首次以费氏弧菌对不同生产厂家所生产的参麦注射液进行发光菌综合毒性检测。结果:在2 m L反应体系下,最优复苏液体积0.9 m L/支菌,每个待测样品加入最优菌液体积50μL,最优检测时间为10 min,最优p H范围为5-10,且10 min发光强度以80-120万为宜;重复性试验、中间精密度试验的相对标准偏差均<15%;不同生产厂家A、B、C成品的EC50平均值分别为35.60%、92.34%、146.57%,具有极显著性差异(P<0.01)。结论:参麦注射液对费氏弧菌的毒性存在显著的浓度-效应关系,且不同生产厂家之间成品EC50值具有显著性差异,提示参麦注射液成品生物学检测标准存在进一步提升的空间,应用Microtox技术检测参麦注射液综合毒性并用于控制不同厂家成品质量波动具有很好的应用前景。
目的:探索-Microtox技术应用于生脉注射液综合毒性检测。方法:以费氏弧菌为测试菌种,通过方法学考察确定最优检测体系及方法学可靠性;在最优检测体系条件下,首次以费氏弧菌对不同生产厂家所生产的生脉注射液进行发光菌综合毒性检测。结果:2 m L反应体系下,最优复苏液体积0.9 m L/支菌,每个待测样品加入最优菌液体积50μL,最优检测时间10 min,最优p H范围5-10,且10 min发光强度以80-120万为宜;重复性试验、中间精密度试验的相对标准偏差均<15%;不同生产厂家A、B、C成品的EC50平均值分别为22.10%、34.10%、46.04%,具有极显著性差异(P<0.01)。结论:生脉注射液对费氏弧菌的毒性存在显著的浓度-效应关系,且不同生产厂家之间成品EC50值具有显著性差异,提示我们生脉注射液成品生物学检测标准存在进一步提升的空间,应用Microtox技术检测生脉射液综合毒性并用于控制不同厂家成品质量波动具有很好的应用前景。
暂无评论