安全风险管理是保障安全的核心任务,传统识别安全风险的方法已经不能满足智能化发展的需求。关系抽取是安全风险识别的方法之一,研究关系抽取对安全风险管理具有重要意义。尽管现有的模型已经取得了较好的性能,但是大多数现有的关系抽取模型忽略了领域实体表征不足的问题,并且数据中存在较多不相关信息。针对该问题,提出了一个基于多视角IB(Information Bottleneck)的安全风险关系抽取模型MIBRE(Multi-view Information Bottleneck for Relation Extraction),它通过融合多视角语义信息来达到增强领域实体语义的目的。这两个视角分别是文本视角和图像视角。为了最大化获取两个视角之间的相关信息,基于信息瓶颈方法构造了一个目标函数,在压缩两个视角信息的同时最大化地保留了相关信息。在两个真实的铁路领域数据集上的实验表明,MIBRE识别的F1值分别达到了64.28%和74.34%,相较于基于异构图的LGGCN模型F1值分别提升了4.41%和2.98%,相较于基于注意力机制的TDGAT模型F1值分别提升了1.89%和1.53%。实验结果验证了所提模型在安全风险识别上的有效性。
暂无评论