为探究蒸汽爆破(汽爆)辅助加工制成杜仲叶茶的挥发性成分差异和主要呈香特征,以杜仲‘华仲8号’嫩叶和成熟叶为对象,采用汽爆技术对杜仲叶进行处理,基于电子鼻和顶空固相微萃取-气相色谱-质谱(headspace solid-phase microextraction combined with gas chromatography-mass spectrometry,HS-SPME-GC-MS)联用法解析汽爆对两种杜仲茶香气特征的影响。主成分分析和线性判别分析对电子鼻数据模型拟合度高,杜仲嫩叶和成熟叶茶汽爆前后香气特征均存在显著差异。HS-SPME-GC-MS检测共鉴定出177种挥发性成分,通过正交偏最小二乘判别分析(变量重要性投影值≥1)以及Kruskal-WallisH检验(P<0.05)进一步筛选出24种香气物质,发现汽爆前嫩叶茶关键香气物质为二氢猕猴桃内酯。汽爆后嫩叶茶关键呈香物质在此基础上增加了壬醛、苯甲醛和苯乙醛,呈现柑橘香、花香、焦糖香、苦杏仁味、坚果香、玫瑰香和巧克力香。汽爆前成熟叶茶无关键香气物质,汽爆后成熟叶茶关键香气物质为二氢猕猴桃内酯和壬醛,呈现甜桃香、木香、柑橘香、花香和焦糖香。研究结果可为开发杜仲叶茶饮品提供参考依据。
为探究Sentinel-2遥感影像林分类型分类的优选特征组合,实现对阔叶林、马尾松林、杉木林和竹林的分类及其效果评价,选取福建省长汀县为研究区,利用Sentinel-2影像提取10个原始波段(O),计算9个光谱指数(S)、7个红边光谱指数(R)和8个纹理特征(Te),以及基于数字高程数据计算2个地形特征指数(To),共计36个特征;利用随机森林算法分析不同特征在林分类型分类中的重要性,并利用袋外样本(Out of Band,OOB)数据与平均不纯度减少方法优选特征组合(Optimum Individuality Combination,OIC);对6种不同试验方案(O、O+To、O+To+S、O+To+S+R、O+To+S+R+Te和OIC)进行林分类型分类,并利用混淆矩阵评价分类结果。结果表明,参与林分类型分类的36个特征的重要性为2.11%~5.43%,其中,海拔因子的重要性最高,红边波段、红边光谱指数、纹理特征中均值与相关性也具有较高的重要性;单独使用原始波段对林分类型进行分类,分类精度不高,总体精度为73.26%,Kappa系数为0.64;以原始波段为基础引入其他特征,除原始波段外,其他特征均可以提高分类精度;优选特征组合(OIC)为重要性前27个特征,包含海拔、8个原始波段、7个红边光谱指数和3个纹理特征,分类精度最高,总体精度为83.13%,Kappa系数为0.77,比其余5种试验方案的总体分类精度提高了0.82%~9.87%。以Sentinel-2影像为数据源,随机森林算法优选的特征组合综合多类型特征中对林分类型分类有重要贡献的特征,从而提高了分类精度。研究结果可为GEE平台Sentinel-2影像在森林资源调查中林分类型信息的提取提供参考。
暂无评论