为了实现光照变化等复杂环境下果实的选择性采摘,该研究以黄瓜为研究对象,以RT-Detr为基线网络,提出了RT-Detr-EV模型。首先在主干网络中添加RepVGG模块,以加强网络特征提取能力,并减少推理时计算量;加入轻量化自注意力机制,减少计算量,增加网络深度;最后使用MPDIoU(minimum point distance based intersection over union)替换原模型中的损失函数,加快模型的收敛,提高模型的检测准确率。研究表明,改进RT-Detr-EV的平均精度均值mAP50相较于原模型提升了3.2个百分点,检测速度相较原模型提升了17.4帧/s。与YOLOv7-X、YOLOv8-l相比,对非适宜采摘的黄瓜识别准确率分别提升4.6、6.5个百分点,检测速度分别提升了40.6、25帧/s,参数量分别减少了55.5%、27.3%。同时试验证明,模型对光照条件多种变化的采摘场景也具有一定的鲁棒性与泛化能力。该研究提出的RT-Detr-EV模型能够满足复杂生长环境黄瓜果实的实时检测需求,可为后续移动式选择性采摘的研究提供技术支持。
针对细粒度鸟类检测的数据标注成本高,以及湿地地区鸟类种类繁多、现实场景复杂化等引起的湿地鸟类检测精度低的问题,该研究提出一种基于半监督CST的湿地场景下的细粒度鸟类检测算法(semi-supervised bird detection with CNN and swin ...
详细信息
针对细粒度鸟类检测的数据标注成本高,以及湿地地区鸟类种类繁多、现实场景复杂化等引起的湿地鸟类检测精度低的问题,该研究提出一种基于半监督CST的湿地场景下的细粒度鸟类检测算法(semi-supervised bird detection with CNN and swin transformer,SSBY-CST),首先基于北京14处监测站在不同湿地场景下采集到的图像,构建了涵盖17种鸟类图像数据集,为模型鲁棒性提供可靠数据支撑。其次提出基于伪标签学习法的单阶段半监督学习框架,基于Yolov5主干网络构建教师学生模型,高效利用无标签数据提升检测性能;训练阶段使用双阈值伪标签分配策略替代传统单一阈值伪标签分配,以优化无监督损失函数。然后设计了结合CNN和Swin Transformer的双通道卷积模块CST,以提高不同类别鸟类与湿地背景的区分能力。试验结果表明,仅在100张标注图像下,该文SSBY-CST算法对17种复杂环境下鸟类的检测精准率和mAP@0.5分别为77.5%和58.2%,相比同时期较先进的YOLO模型提升了17.4个百分点和15.5个百分点,在少量标注的前提下实现了较高的检测性能提升,其中黑鹳、西伯利亚银鸥的m AP@0.5分别达到了95.7%和94.5%,相比基线提升了24.9个百分点和14.3个百分点。此外,消融试验分析了双阈值伪标签分配的作用及CST模块的效果,验证了双阈值伪标签分配与CST模块设计的有效性。该框架利用无标注样本在极少量标注量下提升复杂环境下细粒度鸟类检测性能,以加强农林生态的智能数字化管理。该文将半监督扩展到细粒度鸟类检测,为处理农林生态环境下的鸟类检测提供了技术路径。
针对移动机器人视觉同步定位以及地图构建(Simultaneous localization and mapping,SLAM)研究中存在精确度较低、实时性较差等问题,提出了一种用于移动机器人的RGB-D视觉SLAM算法。首先利用定向二进制简单描述符(Oriented fast and rota...
详细信息
针对移动机器人视觉同步定位以及地图构建(Simultaneous localization and mapping,SLAM)研究中存在精确度较低、实时性较差等问题,提出了一种用于移动机器人的RGB-D视觉SLAM算法。首先利用定向二进制简单描述符(Oriented fast and rotated brief,ORB)算法提取RGB图像的特征点,通过基于快速近似最邻近(Fast library for approximate nearest neighbors,FLANN)的双向邻近(K-nearest neighbor,KNN)特征匹配方法得到匹配点对集合,利用改进后的随机抽样一致性(Re-estimate random sample consensus,RE-RANSAC)算法剔除误匹配点,估计得到相邻图像间的6D运动变换模型,然后利用广义迭代最近点(Generalized iterative closest point,GICP)算法得到优化后的运动变换模型,进而求解得到相机位姿。为提高定位精度,引入随机闭环检测环节,减少了机器人定位过程中的累积误差,并采用全局图优化(General graph optimization,G2O)方法对相机位姿图进行优化,得到全局最优相机位姿和相机运动轨迹;最终通过点云拼接生成全局彩色稠密点云地图。针对所测试的FR1数据集,本文算法的最小定位误差为0.011 m,平均定位误差为0.024 5 m,每帧数据平均处理时间为0.032 s,满足移动机器人快速定位建图的需求。
暂无评论