针对现有森林资源调查中立木胸径测量工作劳动强度大、效率低,先进设备操作复杂、成本高等问题,结合相机标定、三维重建、机器视觉和近景摄影测量等技术,探索基于智能手机与机器视觉技术的立木胸径测量方法。通过智能手机获取待测立木的图像信息,运用Lab颜色空间模型(Lab color model)和3×3算子对图像进行卷积运算,得到立木图像的视觉显著图;结合HSV颜色模型(色调H,饱和度S,明度V)中的H分量增强图像中立木树干部分的颜色对比度,通过图像分割算法识别并获取自然环境下的目标立木轮廓区域;通过一种改进的带有非线性畸变项的相机标定模型标定智能手机的相机内、外参数,并借助相机参数和二维图像信息进行三维世界坐标重建,从而实现树干1.3 m处胸径的测量。经验证,一定距离内胸径测量结果的相对误差小于2.50%。该方法测量精度较高,符合森林资源调查对胸径测量的精度要求,可应用于森林资源调查。
【目的】林木参数是森林蓄积量、森林生物量估算的基础指标,传统的人工调查方式费时费力,已难以适应新形势下数字化森林资源监测技术的要求。地面激光雷达扫描技术能够获取小尺度高分辨率的林分内部结构信息,为林分环境条件下林木胸径、树高提取提供一种新的思路。【方法】以芦头实验林场杉木林样地为研究对象,针对FARO Focus 3D X330三维激光扫描仪设计了7种不同的扫描组合方式对样地进行扫描,提出象限角点云简化思路进行参数提取和精度评价,探究不同扫描组合方式对林木胸径、树高参数提取精度与效率的影响。【结果】1)当扫描分辨率为1/2、质量为4X时,胸径参数提取精度最高;当扫描分辨率为1/4、质量为4X时,树高参数提取精度最高。2)在林木参数提取结果没有显著性差异的前提下,扫描分辨率为1/4、质量为4X的扫描参数工作效率最高。3)选取同时兼顾精度和效率的1/4扫描分辨率、质量4X的扫描结果,进行象限角点云简化,简化的点云能够准确地提取出林木胸径参数。【结论】研究结果对于具有相同或相似地理条件和树种的林地选择扫描参数和点云简化方式具有重要参考价值,可以提高内业工作效率,同时也为地面激光雷达野外样地调查提供方法和技术参考。
暂无评论