特征选择是雷达目标识别流程中一个较为关键的环节,通过对原始特征集进行筛选,挑选出其中的优质特征构成新的特征子集,可以有效增加识别准确率,提升识别效率。为了提升开放环境下高分辨距离像(High Range Resolution Profile,HRRP)的识...
详细信息
特征选择是雷达目标识别流程中一个较为关键的环节,通过对原始特征集进行筛选,挑选出其中的优质特征构成新的特征子集,可以有效增加识别准确率,提升识别效率。为了提升开放环境下高分辨距离像(High Range Resolution Profile,HRRP)的识别性能,针对现有特征选择方法基于闭集假设,无法有效应对实际应用中存在库外目标导致的开集识别(Open Set Recognition,OSR)性能下降问题,本文提出了一种基于局部离群因子(Local Outlier Factor,LOF)的HRRP开集识别特征选择方法。首先,从原始HRRP中提取15维特征向量作为原始特征集;其次,该方法引入聚合性概念,并使用LOF作为其度量,通过评估特征子集的聚合性来保证其在OSR时具有最小的开放空间风险。同时,采用重心法评估特征子集的可分性,并使用前向搜索算法优化特征选择过程,确保所选特征子集为维数约束下的最优解。实验结果表明:利用所提方法选择的特征子集在开集环境下识别性能优于现有特征提取方法,提升了开集环境下高分辨距离像的识别性能。
该文考虑利用连续获取的多视全极化高分辨距离像(High Range Resolution Profile,HRRP)进行目标识别的问题。多视全极化HRRP样本包含了3个层次的先验信息:样本内各分量来自同一目标;单视内4种极化组合方式下的HRRP均对应相同的目标姿态...
详细信息
该文考虑利用连续获取的多视全极化高分辨距离像(High Range Resolution Profile,HRRP)进行目标识别的问题。多视全极化HRRP样本包含了3个层次的先验信息:样本内各分量来自同一目标;单视内4种极化组合方式下的HRRP均对应相同的目标姿态;相同极化方式下的多视观测是相关的。为有效利用上述信息进行目标识别,该文提出一种基于联合稀疏表示的多视全极化HRRP目标识别方法。该方法约束各分量对应的稀疏表示系数共享原子级的稀疏模式。原子级稀疏约束使得从各极化字典中选择来自相同姿态的字典原子对样本中各分量进行稀疏表示,可以有效利用上述3个层次的先验信息进行目标识别。利用目标电磁散射数据对所提方法进行了验证,结果表明,该方法具有较好的识别性能,并且对噪声具有良好的鲁棒性。
暂无评论