This paper presents a three-stage CMOS operational amplifier (opamp) that combines accuracy with stability for a wide range of capacitive loads. A so-called quenching capacitor is added to a multipath nested Miller ...
详细信息
This paper presents a three-stage CMOS operational amplifier (opamp) that combines accuracy with stability for a wide range of capacitive loads. A so-called quenching capacitor is added to a multipath nested Miller compensation (MNMC) topology to obtain stability for a wide range of capacitive loads. Theoretical analysis and mathematical formulas are provided to prove the improvement in stability. A prototype of this frequency compen- sation scheme is implemented in a 0.7μm CMOS process. Measurement′s show that the amplifier can drive capaci- tive loads ranging from 100pF to 100/μF with a gain of 90dB and a minimum phase margin of 26°. The amplifier has a unity-gain bandwidth of 1MHz for a 100pF capacitive load. It employs a quenching capacitance of 18pF.
暂无评论