近年来,采用工作量证明共识机制(Proof of Work,PoW)的区块链被广泛地应用于以比特币为代表的数字加密货币中.自私挖矿攻击(Selfish mining)等挖矿攻击(Mining attack)策略威胁了采用工作量证明共识机制的区块链的安全性.在自私挖矿攻...
详细信息
近年来,采用工作量证明共识机制(Proof of Work,PoW)的区块链被广泛地应用于以比特币为代表的数字加密货币中.自私挖矿攻击(Selfish mining)等挖矿攻击(Mining attack)策略威胁了采用工作量证明共识机制的区块链的安全性.在自私挖矿攻击策略被提出之后,研究者们进一步优化了单个攻击者的挖矿攻击策略.在前人工作的基础上,本文提出了新颖的两阶段挖矿攻击模型,该模型包含拥有单攻击者的传统自私挖矿系统与拥有两个攻击者的多攻击者系统.本文的模型同时提供了理论分析与仿真量化分析,并将两个攻击者区分为内部攻击者与外部攻击者.通过引入内部攻击者与外部攻击者的概念,本文指出传统自私挖矿系统转化为多攻击者系统的条件.本文进一步揭示了在多攻击者系统中两个攻击者将产生竞争并面临着“矿工困境”问题.攻击者间的竞争可被总结为“鲶鱼效应”:外部攻击者的出现导致内部攻击者的相对收益下降至多67.4%,因此内部攻击者需要优化攻击策略.本文提出了名为部分主动发布策略的全新挖矿攻击策略,相较于自私挖矿策略,该策略是半诚实的攻击策略.在特定场景下,部分主动发布策略可以提高攻击者的相对收益并破解攻击者面临的“矿工困境”问题.
为了全面展示锂电池剩余电量估算方法的研究进展,本文查阅了Web of science、知网、国家知识产权局等数据库中2013年以来的相关论文和专利,综述了锂电池剩余电量的主流估算方法。针对常用的直接估算的方法(安时积分法、开路电压法和阻...
详细信息
为了全面展示锂电池剩余电量估算方法的研究进展,本文查阅了Web of science、知网、国家知识产权局等数据库中2013年以来的相关论文和专利,综述了锂电池剩余电量的主流估算方法。针对常用的直接估算的方法(安时积分法、开路电压法和阻抗表征)、基于等效电路模型的方法、基于电化学模型的方法和基于人工智能神经网络等的锂电池剩余电量估算方法,本文汇总了各方法的估计误差,结果为安时积分法的最大估计误差可达15%;开路电压法最大估计误差为12.4%;电化学阻抗谱法平均估计误差小于3.8%;卡尔曼滤波法的估计误差小于1%;粒子群滤波法的平均误差可小于1%;基于电化学模型的方法平均误差小于2%;基于神经网络的方法平均误差小于2%;多方法混合和多参量联合估计的方法最大误差小于5%,平均误差小于2.5%。结果表明,卡尔曼滤波法相较于直接估算的方法和其他基于模型的方法,精确度更高且更容易实现;基于神经网络的方法无需对电池模型进行分析即可获得较为准确的结果;多种方法混合使用和利用多种参量修正估算值的方法进一步提高了估算精度。本文还针对电动汽车以及植入式医疗电子设备对于剩余电量估算方法的需求,对比分析了各方法的估算精度、优点、难点及适用电池类型,阐明估算方法的具体应用方案,并展望估算方法在这两个领域的发展方向。本文可为相关领域的研究和从业人员提供全面、详实的锂电池剩余电量估算方法的研究现状及发展方向信息。
暂无评论