疾病诊治是水产动物健康养殖工程的重要支撑,知识图谱是水产动物疾病诊治知识表示及应用的有效手段,命名实体识别是构建水产动物疾病诊治知识图谱的关键。针对一词多义、实体嵌套等导致的水产动物疾病诊治命名实体识别准确率不高的问题,该研究提出了融合BERT(Bidirectional Encoder Representations from Transformers)与CaBiLSTM (Cascade Bi-directional Long Short-Term Memory)的实体识别模型。首先,建立水产动物疾病诊治专用语料库,并利用语料库中的数据对设计的模型进行训练;其次,采用“分层思想”设计CaBiLSTM模型进行嵌套实体识别,用降维的内层实体特征提升外层实体的辨析度,并引入BERT模型增添实体位置信息;最后,为验证所提出方法的有效性进行对比试验。试验结果表明,提出的融合BERT与CaBiLSTM模型对水产动物疾病诊治命名实体识别准确率、召回率、F1值分别达到93.07%、92.85%、92.96%。研究表明,该模型能够有效解决水产动物疾病诊治命名实体识别过程中由于一词多义、实体嵌套等导致的识别准确率不高问题,可提高水产动物疾病诊治知识图谱的构建质量,促进水产健康养殖工程发展。
针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-...
详细信息
针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-tiny基础上,首先,将骨干网络替换为改进的EfficientNet(EfficientNet-S),并将颈部网络中卷积核大小为3×3卷积替换为轻量化卷积,达到降低参数量的目的;其次,使用k-means++算法聚类锚框尺寸,提高推理速度;最后,使用知识蒸馏算法进一步提高精度。在RUIE(Real-world Underwater Image Enhancement)数据集上,所提算法平均精度均值(mAP)达到73.7%,检测速度达到123 frame/s,参数量为4.45×10^(6),与原YOLOv7-tiny算法相比,在mAP上提升了1.2个百分点,检测速度提升25 frame/s,参数量降低了1.56×10^(6)。实验结果表明,所提算法在提升精度的同时降低了参数量,并且加快了检测速度,证明了该算法的有效性。
暂无评论