面对网络中日益增多的数字作品以及人们版权意识的增强,确认数字作品版权归属非常重要,对于数字作品原创性检测问题,文本匹配技术能够很好地解决这一问题。文本匹配技术通过算法来判断句子之间的语义是否相近。最近几年,深度学习迅速发展,解决文本匹配任务的方法也得到了很好的发展。在已有的基于核的文档排序神经模型(a kernel based neural model for document ranking, KNRM)上进一步地研究和创新,提出融合KNRM和轻量级梯度提升机(light gradient boosting machine, LightGBM)算法的文本匹配模型,在交互矩阵转化的直方图上采用kernel-pooling的方式来提取相关局部特征信息,引入K个不同大小的核函数,来捕捉不同细粒度的相关匹配信号,获取高斯核特征,将LightGBM算法作为分类器,进行分类处理工作,预测最后的匹配结果。通过多个数据集验证模型效果,实验表明,融合模型KNRM-LightGBM在准确率方面优于原模型KNRM,能够达到更好的文本匹配效果。
暂无评论