针对双转子在高速运转时难以从高、低压转子耦合出现的复杂振动现象中提取到有效的振动特征,及目前缺乏对其相应的研究等问题,本文提出一种采用张量主成分分析(multilinear principal component analysis of tensor objects,MPCA)与K-...
详细信息
针对双转子在高速运转时难以从高、低压转子耦合出现的复杂振动现象中提取到有效的振动特征,及目前缺乏对其相应的研究等问题,本文提出一种采用张量主成分分析(multilinear principal component analysis of tensor objects,MPCA)与K-最近邻(K-nearest neighbor,KNN)分类相结合的方法,并将其用于非线性双转子系统的故障诊断。首先采用集中质量法创建非线性裂纹双转子模型及其动力学方程,针对裂纹开合角度变化分析高、低压转子的振动特性。再将振动能量信号与振动信号归一化为彩色图像样本,使用MPCA算法对故障特征进行压缩提取。最后使用KNN分类算法对不同裂纹开合角度情况进行特征分类,并计算相应的分类率。实验结果表明,在转子高速区域含有低噪声的情况下,MPCA可以有效地区分不同裂纹程度的特征信号,为非线性双转子裂纹系统的故障诊断提供了新的检测策略。
针对传统二维主成分分析(two-dimensional principal component analysis,2DPCA)算法应用于焊缝表面缺陷识别中存在重构性能及鲁棒性较弱等问题,本文将最大化投影距离和最小化重构误差引入到目标函数中,提出了一种基于F范数的非贪婪二...
详细信息
针对传统二维主成分分析(two-dimensional principal component analysis,2DPCA)算法应用于焊缝表面缺陷识别中存在重构性能及鲁棒性较弱等问题,本文将最大化投影距离和最小化重构误差引入到目标函数中,提出了一种基于F范数的非贪婪二维主成分分析算法(non-greedy 2DPCA with F-norm,NG-2DPCA-F),该算法具有良好的鲁棒性和较低的重构误差。为了进一步提取图像的结构信息和求解出维数更小的特征矩阵,进而提出一种基于F范数的非贪婪双向二维主成分分析算法(non-greedy bilateral 2DPCA with F-norm,NG-B2DPCA-F)。最后,以含有不同噪声块的焊缝表面图像数据集进行实验,结果表明,本文所提算法在平均重构误差、重构图像与分类识别实验中均表现出良好的鲁棒性能。
暂无评论