针对大规模群决策问题(Large-scale Group Decision Problem,LGDP),在多粒度不平衡犹豫语言模糊环境下,提出了一种决策者评价信息特征提取的方法,同时考虑到决策者们聚类后形成的不同集群间的权重会受其内决策者差异的影响,定义了离散系...
详细信息
针对大规模群决策问题(Large-scale Group Decision Problem,LGDP),在多粒度不平衡犹豫语言模糊环境下,提出了一种决策者评价信息特征提取的方法,同时考虑到决策者们聚类后形成的不同集群间的权重会受其内决策者差异的影响,定义了离散系数,用于修正集群间的权重;首先,对决策者提供的多粒度语言进行一致化,并得到具有概率信息的决策矩阵;其次,在计算机视觉分析中,任意图像都是由RGB三基色构成,且图像相比于数据更易进行特征提取,故通过计算决策矩阵中的所有概率数据对应的RGB值得到对应的彩色图像,运用特征提取算法提取决策矩阵中评价信息的特征,避免了现有决策方法难以快速有效提取决策矩阵中关键特征的缺点,且在处理大规模决策问题时更高效和简洁;之后进一步对决策者进行聚类得到不同的集群,以新定义的离散系数来得到修正后的集群间权重,然后通过计算净流大小来对方案排序得到最终决策结果;最后,以铁路线路方案的选择为例,说明了方法的有效性和可行性。
聚类分析是统计学、模式识别和机器学习等领域的研究热点.通过有效的聚类分析,数据集的内在结构与特征可以被很好地发掘出来.然而,无监督学习的特性使得当前已有的聚类方法依旧面临着聚类效果不稳定、无法对多种结构的数据集进行正确聚类等问题.针对这些问题,首先将K-means算法和层次聚类算法的聚类思想相结合,提出了一种混合聚类算法K-means-AHC;其次,采用拐点检测的思想,提出了一个基于平均综合度的新聚类有效性指标DAS(平均综合度之差,difference of average synthesis degree),以此来评估K-means-AHC算法聚类结果的质量;最后,将K-means-AHC算法和DAS指标相结合,设计了一种寻找数据集最佳类簇数和最优划分的有效方法.实验将K-means-AHC算法用于测试多种结构的数据集,结果表明:该算法在不过多增加时间开销的同时,提高了聚类分析的准确性.与此同时,新的DAS指标在聚类结果的评价上要优于当前已有的常用聚类有效性指标.
暂无评论