目的针对联邦学习中多中心医学数据的异质性特征导致全局模型性能不佳的问题,提出一种基于特征迁移的自适应个性化联邦学习算法(adaptive personalized federated learning via feature transfer,APFFT)。方法首先,为降低全局模型中异...
详细信息
目的针对联邦学习中多中心医学数据的异质性特征导致全局模型性能不佳的问题,提出一种基于特征迁移的自适应个性化联邦学习算法(adaptive personalized federated learning via feature transfer,APFFT)。方法首先,为降低全局模型中异质性特征信息影响,提出鲁棒特征选择网络(robust feature selection network,RFS-Net)构建个性化本地模型。RFS-Net通过学习两个迁移权重分别确定全局模型向本地模型迁移时的有效特征以及特征迁移的目的地,并构建基于迁移权重的迁移损失函数以加强本地模型对全局模型中有效特征的注意力,从而构建个性化本地模型。然后,为过滤各本地模型中异质性特征信息,利用自适应聚合网络(adaptive aggregation network,AANet)聚合全局模型。AA-Net基于全局模型交叉熵变化更新迁移权重并构建聚合损失,使各本地模型向全局模型迁移鲁棒特征,提高全局模型的特征表达能力。结果在3种医学图像分类任务上与4种现有方法进行比较实验,在肺结核肺腺癌分类任务中,各中心曲线下面积(area under the curve,AUC)分别为0.7915,0.7981,0.7600,0.7057和0.8069;在乳腺癌组织学图像分类任务中,各中心准确率分别为0.9849、0.9808、0.9835、0.9826和0.9834;在肺结节良恶性分类任务中,各中心AUC分别为0.8097,0.8498,0.7848和0.7923。结论所提出的联邦学习方法,降低了多中心的异质性特征影响,实现基于鲁棒特征的个性化本地模型自适应构建和全局模型自适应聚合,模型性能有较大提升。
异质图表示学习旨在将图中的语义信息和异质的结构信息嵌入到低维向量空间中。目前大多数的异质图表示学习方法主要通过基于元路径、元图和网络模式的采样以保留图中同类型节点间的单粒度局部结构,忽略了现实世界中复杂异质图具有的丰富的层次结构。商空间理论中的多粒度思想可以在不同粒度内捕获节点间的潜在联系。因此,为在异质图表示中有效地保留层次结构的信息,文章提出一个基于多粒度的异质图表示方法(Heterogeneous Graph Representations Based on Multi-granularity,HeMug)。该方法首先基于不同元路径构建多个同质子图,并利用多粒度的粗化思想,将每个同质子图分别粗化形成多个多粒度子网络,以保留异质图中同类型节点在给定元路径下的层次结构。其次,利用多粒度的细化思想,将每个多粒度子网络最粗层通过现有表示学习方法获得的节点表示逐层细化,以得到节点在每个多粒度子网络下的表示。最后,设计注意力机制以融合节点在不同元路径对应的多粒度子网络下的表示。在四个真实数据集上的实验结果表明,与对比算法相比,提出的HeMug获得了更有效的节点表示。
暂无评论