针对大规模群决策问题(Large-scale Group Decision Problem,LGDP),在多粒度不平衡犹豫语言模糊环境下,提出了一种决策者评价信息特征提取的方法,同时考虑到决策者们聚类后形成的不同集群间的权重会受其内决策者差异的影响,定义了离散系...
详细信息
针对大规模群决策问题(Large-scale Group Decision Problem,LGDP),在多粒度不平衡犹豫语言模糊环境下,提出了一种决策者评价信息特征提取的方法,同时考虑到决策者们聚类后形成的不同集群间的权重会受其内决策者差异的影响,定义了离散系数,用于修正集群间的权重;首先,对决策者提供的多粒度语言进行一致化,并得到具有概率信息的决策矩阵;其次,在计算机视觉分析中,任意图像都是由RGB三基色构成,且图像相比于数据更易进行特征提取,故通过计算决策矩阵中的所有概率数据对应的RGB值得到对应的彩色图像,运用特征提取算法提取决策矩阵中评价信息的特征,避免了现有决策方法难以快速有效提取决策矩阵中关键特征的缺点,且在处理大规模决策问题时更高效和简洁;之后进一步对决策者进行聚类得到不同的集群,以新定义的离散系数来得到修正后的集群间权重,然后通过计算净流大小来对方案排序得到最终决策结果;最后,以铁路线路方案的选择为例,说明了方法的有效性和可行性。
针对准则权重未知的多准则群决策问题,提出了一种新的基于随机优势得到的优先度,在概率不确定语言术语集(Probabilistic Uncertain Linguistic Term Sets,PULTS)环境下,通过充分考虑决策者基于个人偏好对各个准则之间重要性给出的评价...
详细信息
针对准则权重未知的多准则群决策问题,提出了一种新的基于随机优势得到的优先度,在概率不确定语言术语集(Probabilistic Uncertain Linguistic Term Sets,PULTS)环境下,通过充分考虑决策者基于个人偏好对各个准则之间重要性给出的评价来确定准则权重,基于一致准则法提出的一个新的决策方法,综合考虑了专家在进行决策时的犹豫程度和所给评价本身蕴含的信息,在一定程度上减少了决策过程中的信息丢失。首先,在PULTS环境下,定义了不确定度和得分函数,实现了由语言集到数字的转化,并且利用得分函数确定了专家权重,进而得出综合得分矩阵;其次,将随机优势的定义规则应用到概率不确定语言集优先度的定义中,根据各个准则之间的优先度确定了准则的权重;最后,在一致准则决策法的基础上做了相关改进,并将其应用到了PULTS环境中,通过数值算例验证了新的决策方法的可行性和有效性。
暂无评论