针对大规模群决策问题(Large-scale Group Decision Problem,LGDP),在多粒度不平衡犹豫语言模糊环境下,提出了一种决策者评价信息特征提取的方法,同时考虑到决策者们聚类后形成的不同集群间的权重会受其内决策者差异的影响,定义了离散系...
详细信息
针对大规模群决策问题(Large-scale Group Decision Problem,LGDP),在多粒度不平衡犹豫语言模糊环境下,提出了一种决策者评价信息特征提取的方法,同时考虑到决策者们聚类后形成的不同集群间的权重会受其内决策者差异的影响,定义了离散系数,用于修正集群间的权重;首先,对决策者提供的多粒度语言进行一致化,并得到具有概率信息的决策矩阵;其次,在计算机视觉分析中,任意图像都是由RGB三基色构成,且图像相比于数据更易进行特征提取,故通过计算决策矩阵中的所有概率数据对应的RGB值得到对应的彩色图像,运用特征提取算法提取决策矩阵中评价信息的特征,避免了现有决策方法难以快速有效提取决策矩阵中关键特征的缺点,且在处理大规模决策问题时更高效和简洁;之后进一步对决策者进行聚类得到不同的集群,以新定义的离散系数来得到修正后的集群间权重,然后通过计算净流大小来对方案排序得到最终决策结果;最后,以铁路线路方案的选择为例,说明了方法的有效性和可行性。
利用用户的偏好信息,提出一种基于蚁群的双目标协同优化算法(Bi-objective synergy ant colony optimization algorithm based on Pareto domination,PDACO)并用于求解平行批处理机调度问题.考虑在一组差异容量并带有不同加工功率的平...
详细信息
利用用户的偏好信息,提出一种基于蚁群的双目标协同优化算法(Bi-objective synergy ant colony optimization algorithm based on Pareto domination,PDACO)并用于求解平行批处理机调度问题.考虑在一组差异容量并带有不同加工功率的平行批处理机器上,加工带有不同到达时间、尺寸和加工时间的一组工件,以同时最小化最大完工时间和总能耗.偏好向量的引入虽然可以提高算法的收敛性,但会降低解的多样性.为了弥补这一缺陷,在本文所提算法中,利用两个子蚁群分别沿着不同方向,迭代地进行独立和联合搜索.最后,通过大量的仿真实验验证了本文提出算法的有效性.
针对Science发表的密度峰值聚类(Density peaks clustering,DPC)算法及其改进算法效率不高的缺陷,提出一种相对邻域和剪枝策略优化的密度峰值聚类(Relative neighborhood and pruning strategy optimized DPC,RP-DPC)算法.DPC聚类算法...
详细信息
针对Science发表的密度峰值聚类(Density peaks clustering,DPC)算法及其改进算法效率不高的缺陷,提出一种相对邻域和剪枝策略优化的密度峰值聚类(Relative neighborhood and pruning strategy optimized DPC,RP-DPC)算法.DPC聚类算法主要有两个阶段:聚类中心点的确定和非聚类中心点样本的类簇分配,并且时间复杂度集中在第1个阶段,因此RP-DPC算法针对该阶段做出改进研究.RP-DPC算法去掉了DPC算法预先计算距离矩阵的步骤,首先利用相对距离将样本映射到相对邻域中,再从相对邻域来计算各样本的密度,从而缩小各样本距离计算及密度统计的范围;然后在计算各样本的δ值时加入剪枝策略,将大量被剪枝样本δ值的计算范围从样本集缩小至邻域以内,极大地提高了算法的效率.理论分析和在人工数据集及UCI数据集的对比实验均表明,与DPC算法及其改进算法相比,RP-DPC算法在保证聚类质量的同时可以实现有效的时间性能提升.
暂无评论