为了提取更具有判决力的高光谱图像特征,并防止网络因加深导致退化,在新维度残差网络(Res2Net)和压缩激活网络(squeeze and excitation network,SENet)的基础上,提出新型多尺度特征提取模块SE-Res2Net,并设计多尺度空谱融合注意力模块....
详细信息
为了提取更具有判决力的高光谱图像特征,并防止网络因加深导致退化,在新维度残差网络(Res2Net)和压缩激活网络(squeeze and excitation network,SENet)的基础上,提出新型多尺度特征提取模块SE-Res2Net,并设计多尺度空谱融合注意力模块.为了克服网络加深带来的退化问题,SE-Res2Net模块利用通道分组提取高光谱图像细粒度的多尺度特征得到多个不同粒度的感受野,并采用通道优化模块从通道层面量化特征图的重要性.为了进一步从空间维和光谱维同时优化特征,构建多尺度空谱融合的注意力模块,利用非对称卷积在不同尺度上挖掘不同空间位置和不同光谱维特征的关系,不但能减少计算量,还能有效地提取具有判决力的空谱融合特征,从而提高高光谱图像分类的精度.在3个公共数据集Indian Pines,University of Pavia和Grss_dfc_2013上的对比实验表明,与其他较新的深度网络相比,该方法具有更高的总体精度(overall accuracy,OA)、平均精度(average accuracy,AA)和Kappa系数.
聚类分析是统计学、模式识别和机器学习等领域的研究热点.通过有效的聚类分析,数据集的内在结构与特征可以被很好地发掘出来.然而,无监督学习的特性使得当前已有的聚类方法依旧面临着聚类效果不稳定、无法对多种结构的数据集进行正确聚类等问题.针对这些问题,首先将K-means算法和层次聚类算法的聚类思想相结合,提出了一种混合聚类算法K-means-AHC;其次,采用拐点检测的思想,提出了一个基于平均综合度的新聚类有效性指标DAS(平均综合度之差,difference of average synthesis degree),以此来评估K-means-AHC算法聚类结果的质量;最后,将K-means-AHC算法和DAS指标相结合,设计了一种寻找数据集最佳类簇数和最优划分的有效方法.实验将K-means-AHC算法用于测试多种结构的数据集,结果表明:该算法在不过多增加时间开销的同时,提高了聚类分析的准确性.与此同时,新的DAS指标在聚类结果的评价上要优于当前已有的常用聚类有效性指标.
暂无评论