电离层总电子含量(Total Electron Content, TEC)精确预报对提高卫星导航定位精度具有重要意义.为此,提出一种联合鲸鱼优化算法(Whale Optimization Algorithm, WOA)与长短期记忆神经网络模型(Long-Short Term Memory Networks, LSTM)...
详细信息
电离层总电子含量(Total Electron Content, TEC)精确预报对提高卫星导航定位精度具有重要意义.为此,提出一种联合鲸鱼优化算法(Whale Optimization Algorithm, WOA)与长短期记忆神经网络模型(Long-Short Term Memory Networks, LSTM)的TEC短期预报模型;该模型通过LSTM模型训练得到WOA算法的最佳适应度,并利用优化的WOA算法得到LSTM模型最优参数.最后,结合欧洲定轨中心(Center for Orbit Determination in Europe, CODE)提供的TEC格网点数据对所提模型进行验证;试验结果表明:地磁平静状态下,组合模型的平均相关系数ρ较LSTM模型在低、中、高纬度分别提升了2.8%、6.2%和14.8%;地磁活跃状态下组合模型的平均相关系数ρ在低、中、高纬度地区较LSTM模型分别提升了6.6%、9.2%与7.9%.且模型预报效果与地磁活跃状态、季节、太阳活跃水平等有关,在不同地磁活跃状态、季节与不同太阳活动水平情况下,组合模型预报效果均优于单一LSTM模型,为电离层TEC预报模型的实际应用提供了参考.
暂无评论