针对无线传感器网络能量有限等特点,将路由策略考虑到投影矩阵的设计中,该文提出了基于数据融合树的压缩感知算法(Compressed Sensing algorithm based on Data Fusion Tree,CS-DFT)。该算法采用稀疏投影矩阵最小化通信消耗,在生成数据...
详细信息
针对无线传感器网络能量有限等特点,将路由策略考虑到投影矩阵的设计中,该文提出了基于数据融合树的压缩感知算法(Compressed Sensing algorithm based on Data Fusion Tree,CS-DFT)。该算法采用稀疏投影矩阵最小化通信消耗,在生成数据融合树的同时减小投影矩阵与稀疏基之间的相关度以保证数据的重构质量。仿真结果表明,该文提出的算法不仅在重构质量和能量消耗之间做到了很好的平衡,同时对于不同稀疏基下的数据也有较高的适应性。
该文将压缩感知(CS)中信号的重构问题归结为求解l0-正则化问题,针对l0-正则化问题求解比较困难,提出了快速交替方向乘子法(FADMM)。该算法首先将信号的稀疏域的l0-正则化问题通过变量分裂技术转化为约束优化问题;然后引入乘子函数,采用一步Gauss-Seidel思想,对优化问题中的变量极小化;为了加快算法的收敛速度,对变量进行了二次更新,并更新了乘子;最后进行反正交变换,实现对原始信号的重构。将FADMM应用于含噪声图像的重构,进行了仿真实验及对实验结果进行了分析。实验结果表明:FADMM具有更高的峰值信噪比(Peak Signal to Noise Ratio,PSNR)和更快速的收敛速度。
资源受限的传感器节点密集分布在无线传感器网络监控区域,sink节点通过收集节点间观测信息对监控区域内发生的事件进行感知.本文提出SCMAR(Spatial Correlation-based Mobile Agent Routing)路由算法,在移动代理架构内,利用节点观测数...
详细信息
资源受限的传感器节点密集分布在无线传感器网络监控区域,sink节点通过收集节点间观测信息对监控区域内发生的事件进行感知.本文提出SCMAR(Spatial Correlation-based Mobile Agent Routing)路由算法,在移动代理架构内,利用节点观测数据的空间相关性以能量有效的方式对感知事件进行估计.仿真结果表明SCMAR在各种应用环境下能量有效性均优于MARDF(Mobile Agent Routes for Data Fusion)路由算法.
暂无评论