为精准识别与分类不同花期杭白菊,满足自动化采摘要求,该研究提出一种基于改进YOLOv8s的杭白菊检测模型-YOLOv8s-RDL。首先,该研究将颈部网络(neck)的C2f(faster implementation of CSP bottleneck with 2 convolutions)模块替换为RCS-O...
详细信息
为精准识别与分类不同花期杭白菊,满足自动化采摘要求,该研究提出一种基于改进YOLOv8s的杭白菊检测模型-YOLOv8s-RDL。首先,该研究将颈部网络(neck)的C2f(faster implementation of CSP bottleneck with 2 convolutions)模块替换为RCS-OSA(one-shot aggregation of reparameterized convolution based on channel shuffle)模块,以提升骨干网络(backbone)特征融合效率;其次,将检测头更换为DyHead(dynamic head),并融合DCNv3(deformable convolutional networks v3),借助多头自注意力机制增强目标检测头的表达能力;最后,采用LAMP(layer-adaptive magnitude-based pruning)通道剪枝算法减少参数量,降低模型复杂度。试验结果表明,YOLOv8s-RDL模型在菊米和胎菊的花期分类中平均精度分别达到96.3%和97.7%,相较于YOLOv8s模型,分别提升了3.8和1.5个百分点,同时权重文件大小较YOLOv8s减小了6 MB。该研究引入TIDE(toolkit for identifying detection and segmentation errors)评估指标,结果显示,YOLOv8s-RDL模型分类错误和背景检测错误相较YOLOv8s模型分别降低0.55和1.26。该研究为杭白菊分花期自动化采摘提供了理论依据和技术支撑。
暂无评论