目前大多数的轨迹隐私保护方法对轨迹的形状相似性考虑并不充分,并且容易忽略各轨迹点之间的时序相关性,导致生成的干扰轨迹可用性不高。为了解决这些问题,提出了一种基于密度的噪声应用空间聚类(density based spatial clustering of a...
详细信息
目前大多数的轨迹隐私保护方法对轨迹的形状相似性考虑并不充分,并且容易忽略各轨迹点之间的时序相关性,导致生成的干扰轨迹可用性不高。为了解决这些问题,提出了一种基于密度的噪声应用空间聚类(density based spatial clustering of application with noise,DBSCAN)算法的差分隐私轨迹保护机制。首先,使用DBSCAN算法对数据进行聚类分析,降低数据集中噪声点对聚类效果的影响;其次,根据用户活动轨迹点的时序关系,生成位置转移概率矩阵,利用差分隐私的方法确保生成的干扰轨迹点与真实轨迹点具有相似的位置转移概率;最后,综合考虑差分隐私预算和弗朗明歇距离(Fréchet distance)对轨迹相似性的影响,选取位置干扰点。通过仿真实验分析,方案在效率上具有明显的优势,并且生成的干扰轨迹与真实的位置轨迹相比具有较高的形状相似性。
针对密文域可逆信息隐藏在多用户场景下算法嵌入率低、载体图像容灾性能较弱等问题,该文提出一种基于多项式秘密共享的图像密文域可逆信息隐藏方案。通过将图像分割成多幅影子图像并存储在不同的用户端,可以增强图像的容灾性,为了实现额外信息在图像重构前后提取的可分离性,该方案包括两种嵌入算法:算法1在图像分割的过程中,将额外信息嵌入多项式的冗余系数中得到含有额外信息的影子图像,该算法支持在图像重构之后提取额外信息;算法2针对图像分割后的任一影子图像,利用秘密共享的加法同态特性实施嵌入,该算法支持直接从影子图像中提取额外信息。实验在不同门限方案和影子图像压缩率的条件下进行测试,当压缩率为50%时,(3,4)门限方案的嵌入率达4.18 bpp(bit per pixel),(3,5)门限方案的嵌入率达3.78 bpp。结果表明,两种嵌入算法分别支持从影子图像与重构图像中提取额外信息,实现了方案的可分离性;与现有方案相比,所提算法嵌入率较高、计算复杂度较低,具有较强的实用性。
暂无评论