单调分类问题是特征与类别之间带有单调性约束的有序分类问题.对于符号数据的单调分类问题已有较好的方法,但对于数值数据,现有的方法分类精度和运行效率有限.提出一种基于决策森林的单调分类方法(monotonic classification method based on decision forest,MCDF),设计采样策略来构造决策树,可以保持数据子集与原数据集分布一致,并通过样本权重避免非单调数据的影响,在保持较高分类精度的同时有效提高了运行效率,同时这种策略可以自动确定决策森林中决策树的个数.在决策森林进行分类时,给出了决策冲突时的解决方法.提出的方法既可以处理符号数据,也可以处理数值数据.在人造数据集、UCI及真实数据集上的实验数据表明:该方法可以提高单调分类性能和运行效率,缩短分类规则的长度,解决数据集规模较大的单调分类问题.
针对标签传播社区发现算法在节点更新顺序及标签传播过程中存在较大随机性而导致划分结果稳定性差的问题,提出一种基于标签传播的两阶段社区发现算法(a two-stage community detectionalgorithm based on label propagation,LPA-TS),通...
详细信息
针对标签传播社区发现算法在节点更新顺序及标签传播过程中存在较大随机性而导致划分结果稳定性差的问题,提出一种基于标签传播的两阶段社区发现算法(a two-stage community detectionalgorithm based on label propagation,LPA-TS),通过参与系数确定节点更新顺序,并在标签传播过程中依据节点间相似性更新节点标签,得到初始社区划分.将社区看作节点,社区间连边数作为边权重,得到社区关系网络.按照参与系数由低到高的顺序合并社区关系网络中的节点,得到最终社区划分结果.算法LPA-TS减少了传统LPA方法在节点更新和标签传播过程的随机性;在第2阶段,将不符合弱社区定义的初始社区与连边最多的相邻社区合并,再按照社区参与系数由低到高的顺序合并初始社区提升社区发现质量.通过与一些经典算法在8个真实网络及不同参数下LFR benchmark人工网络数据集上的实验比较表明LPA-TS算法表现了良好的稳定性,在NMI、ARI、模块性等方面表现良好.
蒙特卡洛树搜索(Monte Carlo tree search, MCTS)将强化学习的反馈优化与生长树的动态规划相结合,在输出当前状态的最佳动作的同时极大地减少了计算量,因此成为开放环境下众多领域智能系统的关键通用方法.但由于计算资源匮乏或者计算成...
详细信息
蒙特卡洛树搜索(Monte Carlo tree search, MCTS)将强化学习的反馈优化与生长树的动态规划相结合,在输出当前状态的最佳动作的同时极大地减少了计算量,因此成为开放环境下众多领域智能系统的关键通用方法.但由于计算资源匮乏或者计算成本昂贵等原因,完全充分地对树结构进行搜索是难以实现的,因此在有限的预算下高效合理地分配计算资源从而获得当前状态下的最优动作是目前研究的一个重要问题.现有大多数算法仅以识别准确率作为性能指标,通过实验对比验证算法性能,缺少对算法的识别误差和影响因素的分析,从而降低了算法的可信性和可解释性.针对该问题,选择基础核心的2名玩家、完全信息、零和博弈场景,提出了固定预算设定下MCTS抽象模型的最优行动识别算法DLU——基于相对熵置信区间的纯探索(relative entropy confidence interval based pure exploration).首先提出了基于相对熵置信区间的估值方法对叶子节点胜率进行估计,其可以从底层提高树节点估值准确性;其次给出了第1层节点值估计、最优节点选择策略以形成完整算法流程;然后推导了DLU算法的识别误差上界,并分析了算法性能的影响因素;最后在人造树模型和井字棋2种场景下验证算法性能.实验结果表明,在人造树模型上基于相对熵的算法类具有更高的准确度,且模型越复杂识别难度越高时,该算法类的性能优势越显著.在井字棋场景下,DLU算法能有效地识别最优动作.
图聚类算法可以用于发现社会网络中的社区结构、蛋白质互作用网络中的功能模块等,是当前复杂网络研究的热点之一.对网络中节点的相似性和簇发现结果进行合理度量是核心问题.针对此问题,给出了一种基于节点间点不重复路径度量的节点相似性指标.以此为基础提出了一种面向复杂网络的基于“中心-扩展”策略的图聚类算法(A Graph Clustering Algorithm Based on Local Paths between Nodes in Complex Networks,PGC),包括节点相似性计算、中心节点选择、初始簇划分和簇优化四个主要过程.采用点不重复路径对节点相似性进行度量,消除了由大度节点引起较多的点重复路径对节点相似性的影响,提高了算法对大度节点邻域中节点的划分能力.通过与一些经典算法在11个真实网络、22个人工网络数据集上的实验比较分析,结果表明算法PGC在标准互信息、调整兰德系数、F度量、准确度等方面均表现出良好的性能.
暂无评论