为了探索区间二型模糊背景下的多属性群决策方法,以多粒度概率粗糙集为基础,结合MULTIMOORA(Multi-Objective Optimization by Ratio Analysis Plus the Full Multi-Plicative Form)与证据融合理论,发展了一种基于区间二型模糊信息的多...
详细信息
为了探索区间二型模糊背景下的多属性群决策方法,以多粒度概率粗糙集为基础,结合MULTIMOORA(Multi-Objective Optimization by Ratio Analysis Plus the Full Multi-Plicative Form)与证据融合理论,发展了一种基于区间二型模糊信息的多粒度证据融合决策模型.首先,提出多粒度区间二型模糊概率粗糙集模型;然后,通过离差最大化法和熵权法计算决策者权重和属性权重,依据多粒度概率粗糙集和MULTIMOORA法建立区间二型模糊多属性群决策模型,通过源自D-S证据理论的证据融合方法融合得出决策结果.通过钢铁行业耗能的实例,证明提出方法的可行性与有效性,总体上,提出的决策模型具备一定的容错力,有助于获得强解释力的稳健型决策结果.
多粒度群决策是从决策信息中的多粒度特征出发,利用粒计算模型对群决策问题进行高效建模与分析的过程.现有多数多粒度群决策方法仅可提供单一的决策结果,然而不同方法带来的决策结果往往存在差异.为了深入探索犹豫模糊语言信息系统中的稳健型多粒度群决策方法,依据多粒度概率粗糙集、MULTIMOORA(Multi-Objective Optimization by Ratio Analysis Plus the Full Multi-plicative Form)和TPOP(Technique of Precise Order Preference)建立一种面向多粒度群决策的新型犹豫模糊语言多粒度计算方法.首先结合犹豫模糊语言术语集与多粒度概率粗糙集,提出犹豫模糊语言多粒度概率粗糙集模型,然后依据离差最大化法计算属性权重与决策者权重,并结合TPOP建立犹豫模糊语言稳健型多粒度群决策方法.最后,通过医学实例验证提出方法的可行性与有效性.
暂无评论