数据流分类是数据流挖掘领域一项重要研究任务,目标是从不断变化的海量数据中捕获变化的类结构.目前,几乎没有框架可以同时处理数据流中常见的多类非平衡、概念漂移、异常点和标记样本成本高昂问题.基于此,提出一种非平衡数据流在线主动学习方法(Online active learning method for imbalanced data stream,OALM-IDS).AdaBoost是一种将多个弱分类器经过迭代生成强分类器的集成分类方法,AdaBoost.M2引入了弱分类器的置信度,此类方法常用于静态数据.定义了基于非平衡比率和自适应遗忘因子的训练样本重要性度量,从而使AdaBoost.M2方法适用于非平衡数据流,提升了非平衡数据流集成分类器的性能.提出了边际阈值矩阵的自适应调整方法,优化了标签请求策略.将概念漂移程度融入模型构建过程中,定义了基于概念漂移指数的自适应遗忘因子,实现了漂移后的模型重构.在6个人工数据流和4个真实数据流上的对比实验表明,提出的非平衡数据流在线主动学习方法的分类性能优于其他5种非平衡数据流学习方法.
粒度支持向量机(granular support vector machine,简称GSVM)可以有效提高支持向量机(support vector machine,简称SVM)的学习效率,但由于经典GSVM通常将粒用个别样本替代,且粒划和学习在不同空间进行,因而不可避免地改变了原始数据分布...
详细信息
粒度支持向量机(granular support vector machine,简称GSVM)可以有效提高支持向量机(support vector machine,简称SVM)的学习效率,但由于经典GSVM通常将粒用个别样本替代,且粒划和学习在不同空间进行,因而不可避免地改变了原始数据分布,从而可能导致泛化能力降低.针对这一问题,通过引入动态层次粒划的方法,设计了动态粒度支持向量回归(dynamical granular support vector regression,简称DGSVR)模型.该方法首先将训练样本映射到高维空间,使得在低维样本空间无法直接得到的分布信息显示出来,并在该特征空间中进行初始粒划.然后,通过衡量样本粒与当前回归超平面的距离,找到含有较多回归信息的粒,并通过计算其半径和密度进行深层次的动态粒划.如此循环迭代,直到没有信息粒需要进行深层粒划时为止.最后,通过动态粒划过程得到的不同层次的粒进行回归训练,在有效压缩训练集的同时,尽可能地使含有重要信息的样本在最终训练集中保留下来.在基准函数数据集及UCI上的回归数据集上的实验结果表明,DGSVR方法能够以较快的速度完成动态粒划的过程并收敛,在保持较高训练效率的同时可有效提高传统粒度支持向量回归机(granular support vector regression machine,简称GSVR)的泛化性能.
概念漂移是动态流数据挖掘中一类常见的问题,但混杂噪声或训练样本规模过小而产生的伪概念漂移会引起与真实概念漂移相似的结果,即模型在线测试性能的不稳定波动,导致二者容易混淆,发生概念漂移的误报.针对流数据中真伪概念漂移的混淆问题,提出一种基于在线性能测试的概念漂移检测方法(concept drift detection method based on online performance test,简称CDPT).该方法将最新获得的数据集进行均匀分组,在每组子数据集上分别进行在线学习,同时记录每组子数据集训练测试得到的分类精度向量,并计算相邻学习时间单元之间的精度落差,依据测试精度下降阈值得到有效波动位点.然后采用交叉检验的方式整合不同分组中的有效波动位点,以消除流数据在线学习过程中由于训练样本过小导致模型不稳定造成的检测干扰,根据精度波动一致性得到一致波动位点.最后,通过跟踪在线学习分类准确率,得到一致波动位点邻域参照点的测试精度变化,比较一致波动位点邻域参照点对应的模型测试精度下降幅度及收敛情况,以有效检测一致波动位点当中真实的概念漂移位点.实验结果表明,该方法能够有效辨识流数据在线学习过程中发生的真实概念漂移,并能有效避免训练样本过小或者流数据中噪声对检测结果的负面影响,同时提高模型的泛化性能.
暂无评论