社区结构是复杂网络的重要特征之一,识别网络中不同功能的社区对理解复杂网络特性具有重要作用。基于标签传播的社区发现算法通常以节点的直接邻居作为邻域更新标签,可能无法准确发现社区结构或导致得到的社区划分结果不稳定。针对此问题,提出了一种基于局部随机游走的标签传播算法(Local Random Walk Based Label Propagation Algorithm, LRW-LPA),利用节点的k步邻域内局部重要性指标选择重要性最低的节点作为起始节点,进行带重启的局部随机游走以确定起始节点的局部邻域;选择此局部邻域范围内出现次数最多且影响值最大的标签来更新起始节点标签。LRW-LPA采用带重启的局部随机游走过程能更准确地确定节点的合适邻域范围,提高了算法的稳定性。与LPA,BGLL,Infomap, Leiden, Walktrap等经典社区发现算法在12个真实网络和12个人工构造网络上的比较实验表明,LRW-LPA算法在标准互信息(NMI)、调整兰德系数(ARI)和模块度(Q)等方面表现良好。
深度学习的优势在于其具有深层次的特征提取结构,而随着层数的增加以及激活函数的影响往往会导致其编码能力下降.基于此本文提出了一种基于U-Net和FCN网络进行编码约束的方法,并应用到医学图像分割上.编码约束结构以U-Net和FCN全卷积网络模型架构为主体,对网络最后一层使用Sigmoid激活函数的1×1卷积层进行特征约束,通过将特征值向0.5靠近预防Sigmoid激活函数产生的梯度消失问题,同时要求特征值不能集中在0.5附近,最终在保持特征区分度的前提下规范编码值,进而提升网络编码能力.本文在Finding lungs in CT二维肺部分割数据集和肝脏数据集上分别进行了实验,实验结果表明本文方法能够有效的预防梯度消失的同时提升全卷积网络特征的编码能力,进而能有效地提升分割性能.
由于现有的多数概念演化检测方法本质上是基于监督学习,且通常用于解决一个时间段内仅出现一个新类,不能处理数据流中的类消失和类循环任务。为此,提出一种基于弱监督集成的概念演化自适应检测方法(AD_WE:Adaptive Detection Method for Concept Evolution Based on Weakly Supervised Ensemble)。该方法利用弱监督集成策略构建集成学习器,对数据块中的训练样本进行局部预测,在此基础上,基于局部密度和相对距离识别特征空间中具有较强内聚性的相似数据并对其聚类,对聚类结果进行相似度比较,实现新类实例的检测及不同新类的区分;同时根据数据随时间变化特征建立动态衰减模型,及时消除消失类,并通过相似度比较检测循环类。实验表明,所提方法能对概念演化做出及时响应,可有效识别消失类和循环类,提高学习器的泛化性能。
暂无评论