有限理性通常指决策者困顿于信息处理能力有限的自然状态,该状态是决策者在实际决策情境中需要面对的常态,因而有必要研究有限理性下的决策问题.多粒度粗糙集在多属性群决策分析领域的优势在于运算效率高,并能结合决策风险,然而多数基于多粒度粗糙集的多属性群决策方法并未考虑有限理性这一实际情境.以q‐RO(q‐Rung Orthopair)模糊集为背景,首先提出乐观与悲观多粒度q‐RO模糊粗糙集模型;接着在并购对象选择的背景下,依据交互式多属性决策(Portuguese of Interactive and Multi‐criteria Decision Making,TODIM)法来处理有限理性下的决策信息,发展多粒度q‐RO模糊粗糙集的最优粒度选择机制并建立相应的多属性群决策方法;最后结合并购对象选择的实际算例验证了所建立模型与方法的有效性.
对于法律文书中证据名、证实内容和卷宗号等实体的正确提取,可以有效提升法官的办案效率。然而,这些实体与一般实体不同,具有字符长度较长和相互关联性较强的特点。因此,该文提出了一种基于JCWA-DLSTM(join character word and attentio...
详细信息
对于法律文书中证据名、证实内容和卷宗号等实体的正确提取,可以有效提升法官的办案效率。然而,这些实体与一般实体不同,具有字符长度较长和相互关联性较强的特点。因此,该文提出了一种基于JCWA-DLSTM(join character word and attention-dual long short-term memory)的法律文书命名实体识别方法。该方法利用字级语言模型获取词语的表示,同时,利用自注意力机制获得句子的内部表示。在此基础上,采用双向LSTM将句子内部表示和基于字级语言模型词语表示分别与词向量拼接编码,再将两种语义表示拼接融合,获得最终的句子语义表示。最后利用CRF将句子的语义表示解码,得到最优标记序列。实验结果表明,该文提出的方法可对法律文书中的证据名、证实内容和卷宗号等实体边界进行有效的确定,提升了命名实体识别的结果。
针对目前符号数据的分类性能较低,通过挖掘属性值与标签之间可能存在的空间结构关系,提出了一种基于空间相关性分析的符号数据分类方法。该方法首先采用独热编码的方式对符号数据进行特征扩容,然后基于互信息和条件熵信息度量方法,定义了一种符号数据空间关系表示方法。在此基础上,分别结合支持向量机(support vector machine,SVM)和K-最近邻(K-nearest neighbor,KNN)模型分类器,提出了基于空间相关性分析的SVM分类算法(SVM classification algorithm based on space correlation analysis,SCA_SVM)和基于空间相关性分析的KNN分类算法(KNN classification algorithm based on space correlation analysis,SCA_KNN)两种分类算法。该方法既能够体现出属性值与标签之间的关联关系,也可以有效地度量不同属性值之间的距离或差异性。在标准UCI数据集上的实验结果表明,该方法在分类性能上更加有效。
过采样和欠采样方法是处理非平衡数据集分类的常用方法,但使用单一的采样算法可能造成少数类样本过拟合或者丢失含有重要信息的样本。提出了基于分类超平面的混合采样算法SVM_HS(hybrid sampling algorithm based on support vector mac...
详细信息
过采样和欠采样方法是处理非平衡数据集分类的常用方法,但使用单一的采样算法可能造成少数类样本过拟合或者丢失含有重要信息的样本。提出了基于分类超平面的混合采样算法SVM_HS(hybrid sampling algorithm based on support vector machine),旨在克服SVM算法在处理非平衡数据时分类超平面容易偏向少数类样本的问题。该算法首先利用SVM算法得到分类超平面。然后迭代进行混合采样,主要包括:(1)删除离分类超平面较远的一些多数类样本;(2)对靠近真实类边界的少数类样本用SMOTE(synthetic minority oversampling technique)过采样,使分类超平面向着真实类边界方向偏移。实验结果表明相比其他相关算法,该算法的F-value值和G-mean值均有较大提高。
针对K-means算法处理大规模数据时算法迭代时间较长的问题,提出一种基于分层抽样的大数据快速聚类算法(A Large Data Fast Clustering Algorithm Based on Stratified Sampling,FCASS)。提出一种分层方法,可以快速将原始数据集进行分层...
详细信息
针对K-means算法处理大规模数据时算法迭代时间较长的问题,提出一种基于分层抽样的大数据快速聚类算法(A Large Data Fast Clustering Algorithm Based on Stratified Sampling,FCASS)。提出一种分层方法,可以快速将原始数据集进行分层,使得层内数据相似度较大,层间数据相似度较小;引入抽样时间函数,并求得各层样本量的最优分配方案;用K-means算法对样本集进行聚类,得到最终结果。在4个UCI数据集以及8个人工数据集上进行实验,结果表明,FCASS算法具有较高的聚类精度,并且在大规模数据集上运行速度较快。
暂无评论