时间关系的识别成为近年来自然语言处理领域(nature language processing,NLP)的一个研究热点。引入时间片段和主题片段这两种比事件触发词粒度粗的语义单元进行时间关系识别,首先在文本中利用一些时间篇章特点识别时间片段,然后利用相...
详细信息
时间关系的识别成为近年来自然语言处理领域(nature language processing,NLP)的一个研究热点。引入时间片段和主题片段这两种比事件触发词粒度粗的语义单元进行时间关系识别,首先在文本中利用一些时间篇章特点识别时间片段,然后利用相似度计算与支持向量机(support vector maehine,SVM)模型相结合的方法识别主题片段,最后在主题片段范围内,以时间片段为排序对象,使用最大熵分类模型识别时间关系。在TempEval-2010的汉语语料上进行实验,得到的时间关系识别宏平均精确率为60.09%。实验结果表明:引入时间片段后可有效减少不必要的事件时序关系的识别;同时,在主题片段的约束下所得到的时间关系更简洁、语义逻辑性更好。
经典的Top-N推荐算法利用用户正反馈信息对全部项目进行排序,然后选择前N个项目推荐给用户.针对经典推荐算法未充分利用用户负反馈信息的问题,提出基于正负反馈的SVM协同过滤(SVM Collaborative Filtering based on Positive and Negati...
详细信息
经典的Top-N推荐算法利用用户正反馈信息对全部项目进行排序,然后选择前N个项目推荐给用户.针对经典推荐算法未充分利用用户负反馈信息的问题,提出基于正负反馈的SVM协同过滤(SVM Collaborative Filtering based on Positive and Negative Feedback,PNF-SVMCF)Top-N推荐算法,充分利用用户负反馈信息过滤测试集中用户可能不喜欢的项目,只对测试集中剩余的项目进行Top-N排序.PNF-SVMCF算法过滤用户可能不喜欢的项目,这样可以缩减需要排序的项目规模,提升推荐效率;同时去除这些项目对排序的干扰,提高推荐精度.在MovieLens数据集上的实验结果表明,该方法具有良好的推荐速度和精度,特别是在较少的推荐项目情况下,能够表现出更好的推荐精度.
暂无评论