概念漂移是数据流挖掘中不可避免的难点问题,其典型特征是数据分布随时间可能发生改变。针对现有模型处理数据流分类任务时出现过拟合的问题,本文提出了一种目标解耦驱动的在线深度网络(Online Deep Network driven by Target Decoupl...
详细信息
概念漂移是数据流挖掘中不可避免的难点问题,其典型特征是数据分布随时间可能发生改变。针对现有模型处理数据流分类任务时出现过拟合的问题,本文提出了一种目标解耦驱动的在线深度网络(Online Deep Network driven by Target Decoupling, ODNTD)。首先,该模型从历史数据流中学习一个任务未知型特征提取器,实现了对任务的无偏见表示学习,从而增强了模型的泛化能力;其次,模型利用任务特定的权重调整,使得任务未知的通用特征表示能够适应具体任务,通过这种目标任务的权重学习进一步提升了模型的适应性。实验结果表明,所提出的方法对含概念漂移的数据流有良好的泛化性能。
因果推断可以帮助人们制定更加合理的决策方案,在电子商务和精准医学等领域有广泛的应用,其性能严重依赖对个体因果效应(Individual Treatment Effect,ITE)的准确估计,观察数据中存在的选择偏差与样本数量不一致问题都会影响ITE估计的准确性.对于选择偏差问题,现有的深度学习方法主要通过平衡所有协变量来进行缓解,但平衡协变量中与处理无关的噪声变量会导致对个体因果效应的估计不准确.对于样本数量不一致问题,这些方法主要通过在损失函数中添加样本权重来进行缓解,但其不能有效提升模型预测的准确性.提出一种基于深度表示学习的方法,通过g^(nn)和IPM(Integral Probability Metric)网络共同诱导神经网络得到协变量中非噪声变量的平衡共享表示,然后引入X-Net来缓解样本数量不一致问题.在半合成与真实数据集上的实验结果表明,提出的算法可以通过缓解样本选择偏差与样本数量不一致问题来提高模型ITE估计的准确性.
暂无评论