等离子体填充能够明显提高真空电子器件的效率和功率,研究等离子体填充器件具有重要的科学价值.本文基于对等离子体填充金属光子晶体慢波结构色散特性的分析,利用粒子模拟方法展示了等离子体填充慢波结构中的注波互作用过程.重点研究了慢波结构中场分布特性、等离子体密度和外部工作条件对频率及输出功率的影响.研究发现,填充一定密度等离子体后,慢波结构内纵向和横向电场强度明显增大,注波互作用增强,输出频率受等离子体影响不大.金属光子晶体结构具有的频率选择特性使器件工作于TM01模态.阴极电压增加使输出功率增大,频率略有增加.引导磁场增加使输出功率先增大后减小,而频率基本不受影响.等离子体填充后器件的输出功率上升,当增加压强至100 m Torr(1 m Torr=0.133 Pa)时,输出功率提高约20%,但只有适当密度下才有较好的角向场分布.通过理论与模拟相结合,发现填充一定密度的等离子体能够提高器件输出功率和效率,为发展新型高功率毫米波振荡辐射源奠定了理论和仿真基础.
针对无线光通信系统中反向差分脉冲位置调制(RDPPM)功率利用率较低以及差错性能较差等问题,结合反向脉冲宽度调制方式(RPWM)与RDPPM,提出了一种新型组合调制方式,即反向差分脉冲位置宽度调制(RDPPWM)。研究分析了RDPPWM的符号结构、平均发射功率、带宽需求以及在理想加性高斯白噪声(AWGN)干扰下的误包率,并与开关键控(OOK)、RDPPM、RPWM等调制方式进行了比较。仿真结果表明,RDPPWM可以获得较高的功率利用率,增加了信道容量,降低了带宽需求,且不需要符号同步;在相同信号接收功率-28 d Bm的条件下,RDPPM的误包率是2.2×10-8,但是RDPPWM的误包率却可以降低至2.6×10-12。故RDPPWM为无线光通信的调制技术提供了一种新的选择。
暂无评论