设计作品以四川师范大学服装与设计艺术学院馆藏黔东南丹寨苗族百鸟衣服饰为实物样本,对相关文献史料进行研究、相关地域特色进行考察后,运用Style 3D服装建模软件对其进行3D虚拟仿真服饰复原。在结构、图案与色彩复原中遵循传统,运用富怡CAD打版软件制作版型,运用Illustrator矢量制图软件进行图案绘制与上色;在刺绣肌理的数字化呈现中,运用Style 3D Fabric面料制作软件对服饰图案进行刺绣肌理的三维立体效果制作。
大语言模型(large language model,LLM)技术热潮对数据质量的要求提升到了一个新的高度.在现实场景中,数据通常来源不同且高度相关.但由于数据隐私安全问题,跨域异质数据往往不允许集中共享,难以被LLM高效利用.鉴于此,提出了一种LLM和...
详细信息
大语言模型(large language model,LLM)技术热潮对数据质量的要求提升到了一个新的高度.在现实场景中,数据通常来源不同且高度相关.但由于数据隐私安全问题,跨域异质数据往往不允许集中共享,难以被LLM高效利用.鉴于此,提出了一种LLM和知识图谱(knowledge graph,KG)协同的跨域异质数据查询框架,在LLM+KG的范式下给出跨域异质数据查询的一个治理方案.为确保LLM能够适应多场景中的跨域异质数据,首先采用适配器对跨域异质数据进行融合,并构建相应的知识图谱.为提高查询效率,引入线性知识图,并提出同源知识图抽取算法HKGE来实现知识图谱的重构,可显著提高查询性能,确保跨域异质数据治理的高效性.进而,为保证多域数据查询的高可信度,提出可信候选子图匹配算法Trust HKGM,用于检验跨域同源数据的置信度计算和可信候选子图匹配,剔除低质量节点.最后,提出基于线性知识图提示的多域数据查询算法MKLGP,实现LLM+KG范式下的高效可信跨域查询.该方法在多个真实数据集上进行了广泛实验,验证了所提方法的有效性和高效性.
暂无评论