将合成的立方体纳米氧化亚铜用于修饰玻碳电极,在其上固定葡萄糖氧化酶,构建了高灵敏的安培型葡萄糖生物传感器。采用X射线衍射(XRD)、扫描电镜(SEM)对合成的立方体纳米氧化亚铜及其修饰电极进行了表征。结果表明,合成的纳米氧化亚铜为均匀的立方体形状。采用循环伏安法(CV)、交流阻抗谱(EIS)、差分脉冲伏安法(DPV)及计时电流法(CA)考察了修饰电极的电化学行为。在含0.1 mmol/L葡萄糖的磷酸盐缓冲溶液(p H 7.4)中研究了立方体纳米氧化亚铜修饰电极的循环伏安(CV)响应,实验结果表明,此修饰电极对葡萄糖显示出良好的电催化性能。DPV响应电流与葡萄糖的浓度在5.0×10;.0×10;mol/L范围内呈良好的线性关系,线性相关系数R;=0.9983,检出限为6.8×10;mol/L(S/N=3)。CA实验结果表明,尿酸、抗坏血酸、D-果糖对传感器不产生干扰。本传感器具有较好的重现性和稳定性,可用于实际样品中葡萄糖的检测。
采用湿化学法制备了立方体{100}、四面体{111}和菱形十二面体{110}磷酸银微晶,通过场发射扫描电镜(FE-SEM),X射线粉末衍射(XRD),固体紫外可见漫反射光谱(UV-Vis DRS),光电流,光致发光(PL)对催化剂的组分、结构、形貌及光电性质进行了系统表征。以罗丹明B(Rh B)为目标污染物,对不同形貌Ag_3PO_4微晶的可见光催化活性进行了探究。通过微热量技术结合过渡态理论和热化学循环原理对Ag_3PO_4的摩尔表面Gibbs自由能进行了测定,其数值分别为1.2972、0.9621、0.5414 k J?mol-1。采用自主设计的新型LED光-微热量系统获取了Ag_3PO_4原位光催化降解Rh B 2 h的热效应和稳定放热阶段的热焓变化率,并对其热谱曲线进行了合理的解析。结果表明,Ag_3PO_4的催化活性与原位光催化降解Rh B的热效应、热焓变化率以及摩尔表面Gibbs自由能皆呈正相关。此外,通过捕获剂实验和电子顺磁共振(ESR)确定了Ag_3PO_4光催化降解Rh B过程的主要活性基团。
暂无评论