针对小型机器人在复杂环境中进行实时定位与建图时,存在机载端CPU(Central Processing Unit)计算资源不足,建图精度差、探索效率低的问题.本文提出一种基于同时定位与建图(Simultaneous Localization and Mapping,SLAM)、截断符号距离函...
详细信息
针对小型机器人在复杂环境中进行实时定位与建图时,存在机载端CPU(Central Processing Unit)计算资源不足,建图精度差、探索效率低的问题.本文提出一种基于同时定位与建图(Simultaneous Localization and Mapping,SLAM)、截断符号距离函数(Truncated Signed Distance Function,TSDF)实时的三维重建方法 .该方法基于深度相机或双目相机获取重建目标及场景的RGB(Red Green Blue)图和深度图,同时基于ORB_SLAM2获取位姿信息;采用基于特征点云数据的表面重建算法TSDF与深度图相结合,实现一种实时三维场景重建;为了降低三维重建模型与真实场景的误差,提出一种采用光线碰撞检测融合特征点的方法,并结合优化策略减小光线投影距离与体素到物体表面距离的误差.通过优化后的TSDF值,保证了重建场景的完整性.在ASL(Autonomous Systems Lab)开源数据集上,相比于Voxblox、Voxfield和VDBblox,该系统三维重建模型的均方根误差分别下降了55.6%、47.11%、21.7%,相比于Voxblox、Voxfield,系统地图更新速率分别提升了9.7%和12.9%.最后,将该系统用于室内场景实验,地图平均每帧更新速率为7.35 ms/帧,验证了所提系统的可行性和有效性.
传统的攻击检测方法很难辨识出利用零日漏洞发起的高级持续性威胁(advanced persistent threat,APT)攻击活动.为此提出一种面向零日攻击检测的APT攻击活动辨识方法(APTIZDM),该方法由三个主要部分组成.第一部分态势觉察本体构建(CSPOC)方法进行物联网(IoT)系统中关键活动属性及特征的形式化描述.第二部分恶意C&C(command and control)DNS响应活动挖掘(MCCDRM)方法用于辨识APT攻击情境中的恶意C&C通信活动,并可有效控制活动辨识过程的范围与起始时间,从而减小计算开销.第三部分APT攻击情境中零日攻击活动辨识(ZDAARA)方法,其基于贝叶斯网络和安全风险传播理论,对系统调用信息进行关联分析,计算出各系统调用实例的恶意概率,可有效辨识出被入侵检测系统漏报的零日攻击活动.仿真实验结果表明,作为APTIZDM的核心内容,MCCDRM方法和ZDAARA方法都实现了较高的准确率和较低的误报率,协同完成了对APT攻击活动有效辨识.
暂无评论