为了扩大自由空间光(FSO,free space optical)通信网络的覆盖范围,研究了感知协作FSO通信策略。策略的物理模型为直线型放置的4个节点要通过中间2个节点的协作完成两对节点间光波信号的交换。首先讨论了联合无线网络编码(JN)和叠加编码...
详细信息
为了扩大自由空间光(FSO,free space optical)通信网络的覆盖范围,研究了感知协作FSO通信策略。策略的物理模型为直线型放置的4个节点要通过中间2个节点的协作完成两对节点间光波信号的交换。首先讨论了联合无线网络编码(JN)和叠加编码感知接收(SCCR)的概念及其相关分析,然后对FSO通信网络模型提出了两种不同的传输策略,并分析了每个策略可获得的速率对范围。数值分析结果表明,提出的双向JN-SCCR中继协作策略由于全部或部分地利用了无线网络编码感知接收机对无线网络编码信号的感知特征,使FSO通信系统可获得的传输速率范围得到很大的改善,有效地提高了FSO通信系统的吞吐量和覆盖范围。
为了提高U-Net网络性能的同时尽可能减少额外计算量,本文提出了一种新的多尺度偶数卷积注意力UNet(Multiscale Even Convolution Attention U-Net,MECAU-Net)网络。该网络在编码端采用2×2偶数卷积代替3×3卷积进行特征提取,并...
详细信息
为了提高U-Net网络性能的同时尽可能减少额外计算量,本文提出了一种新的多尺度偶数卷积注意力UNet(Multiscale Even Convolution Attention U-Net,MECAU-Net)网络。该网络在编码端采用2×2偶数卷积代替3×3卷积进行特征提取,并借鉴多尺度思想,采用4×4偶数卷积将得到的信息直接传递给主干部分,以获取更全面的图像信息并减少额外计算开销,同时还采用对称填充解决偶数卷积提取信息过程中产生的偏移问题。此外,在2×2偶数卷积模块后加入卷积注意力模块,结合空间和通道注意力,在提取更丰富的信息的同时几乎不增加额外开销。最后,在两个医学图像数据集上进行仿真实验,实验结果表明提出的MECAU-Net网络相对于U-Net在稍微增加计算成本的情况下,分割性能得到了较大的提升,并比其他对比网络取得更好的分割性能的同时还降低了参数量。
无监督域自适应行人重识别(Unsupervised Domain Adaptation for person Re-identification, UDA-ReID)任务致力于将知识从已标记的源域数据转移到目标域。和传统的单源域自适应相比,将多源域的知识迁移到目标域是一项更具挑战性的任务...
详细信息
无监督域自适应行人重识别(Unsupervised Domain Adaptation for person Re-identification, UDA-ReID)任务致力于将知识从已标记的源域数据转移到目标域。和传统的单源域自适应相比,将多源域的知识迁移到目标域是一项更具挑战性的任务。由于领域上的差距,多数据集的简单组合只能产生有限的改进。针对此问题,提出了一种基于精确特征分布匹配和多域信息融合的多源域对比学习(exact feature distribution Matching and multi-domain information Fusion based Multi-domain Contrastive Learning, MFMCL)方法。该方法首先采用具有混合记忆的自步对比学习提取不同域数据的特征,并对提取到的特征进行构图,然后通过两层残差图卷积网络进行多域特征融合。其次,为了增强交叉分布特征、产生更丰富的信息,通过基于排序算法的精确直方图匹配来实现精确特征分布匹配,以获得更多样化的特征增强。实验表明,与目前先进的无监督域自适应行人重识别方法相比,所提出的MFMCL方法在广泛使用的行人重识别数据集Market1501、MSMT17和Duke上都取得了优越的性能。
暂无评论