随着互联网上Web服务的日益增多,面对大量功能相同的候选服务,用户希望能够选择质量最优的候选服务.然而,用户通常并不知道所有候选服务的服务质量(Quality of Service,QoS).因此,基于Web服务的历史记录预测QoS值得到了广泛关注.传统的...
详细信息
随着互联网上Web服务的日益增多,面对大量功能相同的候选服务,用户希望能够选择质量最优的候选服务.然而,用户通常并不知道所有候选服务的服务质量(Quality of Service,QoS).因此,基于Web服务的历史记录预测QoS值得到了广泛关注.传统的基于协同过滤(CF)的预测方法可能会遭遇数据稀疏、用户信任等问题,导致该方法在预测精度方面表现一般.为解决上述问题,该文提出一种基于覆盖随机游走算法的服务质量预测方法.该方法首先基于用户服务历史QoS记录,使用改进的覆盖算法对用户进行聚类,选取与每个用户聚类次数的Top-k个用户为该用户的信任用户,连接所有用户与其信任用户构建用户信任网;其次,基于用户信任网提出一种随机游走预测方法,在随机游走的过程中,不仅考虑目标服务的QoS信息,同时考虑相似服务的QoS信息,以确保QoS预测的准确性;最后,每次随机游走获得一个QoS值,为使预测更加准确,作者进行多次随机游走,汇总所有QoS值进行预测.为验证文中方法的有效性,作者在真实的Web服务数据集进行了大量实验,其中包括来自339个用户的5825个真实世界Web服务的1 974 675个Web服务调用.实验结果表明文中方法在预测精度上明显优于现有方法,同时可以很好地解决推荐系统的数据稀疏和用户信任问题.
随着车联网技术的快速发展和广泛部署,其在为智能网联汽车提供互联网与大数据分析等智能化服务的同时,引入了网络入侵等安全与隐私问题。传统车载网络的封闭性导致现有的车载网络通信协议,特别是部署最为广泛的控制器局域网络(Controller Area Network,CAN)总线协议,在发布时缺少隐私与安全保护机制。因此,为检测网络入侵、保护智能网联汽车安全,文中提出了一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN网络入侵检测方法。该方法提取单位时间窗内CAN网络报文ID的加权自信息量和ID的归一化值作为特征信息,并在移动边缘计算服务器处构建并训练SVDD模型,目标车辆基于训练的SVDD模型进行异常特征值识别,从而实现实时的车载CAN网络入侵检测。文中采用韩国高丽大学HCR实验室公开的CAN网络数据集,对所提方法与3种传统的基于信息熵的车载网络入侵检测方法在拒绝服务攻击和伪装攻击检测准确率方面进行了对比与分析。仿真实验结果表明,在少量报文入侵时,所提方法显著提高了入侵检测的准确率。
暂无评论