干旱半干旱地区急需高分辨率的土壤盐度图用于显示盐度空间分布的细微变化,指导盐渍化区域和潜在盐渍化区域制定土地资源管理政策和水资源管理政策,防止土壤进一步退化,保障农业经济可持续发展和粮食安全生产。基于PlanetScope影像,提取植被光谱指数和土壤盐度指数,共计21个变量,将其输入装袋回归(Bootstrap aggregating,Bagging)算法中,构建了土壤盐度预测模型Model-Ⅰ;使用最相关最小冗余(Max-relevance and min-redundancy,mRMR)方法筛选特征变量,将其输入Bagging中,构建了土壤盐度预测模型Model-Ⅱ,使用野外采样数据来辅助建模并进行验证。通过模型评价指标对Model-Ⅰ和Model-Ⅱ进行评估。结果表明:Model-Ⅱ的预测性能优于Model-Ⅰ(验证集决定系数为0.66,均方根误差为18.00 dS·m-1,四分位数的相对预测误差为3.21),mRMR有效降低了多维特征冗余问题。PlanetScope影像结合mRMR方法成功绘制了高分辨率土壤盐度图,提供了更详细的土壤盐度空间分布信息,研究结果对利用PlanetScope数据监测土壤盐渍化信息起推动作用。
【目的】叶绿素含量可以用来评价棉花的长势情况,快速、准确和大面积监测棉花叶绿素含量,有助于实现精准农业。【方法】分别用0~2阶(步长为0.2)的分数阶微分处理和1~10尺度下的小波变换对田间测定的陆地棉和海岛棉等2种棉花的高光谱反射率进行处理,提高棉花叶绿素含量反演精度。通过分析不同处理方式的光谱与叶绿素含量之间的相关性,筛选得出敏感波段;并运用支持向量机回归和随机森林回归模型分别构建棉花叶绿素含量高光谱估算模型。【结果】(1)在全波段范围内,2种棉花325~1075 nm光谱反射率曲线整体变化趋势基本相同,其反射率均随着叶绿素含量的增加而增大。(2)经连续小波变换和分数阶微分变换后,2种棉花高光谱数据和叶绿素含量的相关性有所增强。使用随机森林回归和小波能量系数7对陆地棉叶绿素含量的反演效果最好,建模集决定系数(coefficient of determination,R^(2))为0.931,均方根误差(root mean square error,RMSE)为0.782,剩余预测偏差(residual prediction deviation,RPD)为2.162;使用随机森林回归和小波能量系数6对海岛棉叶绿素含量的反演效果最佳,建模集R^(2)为0.932,RMSE为1.198,RPD为2.687。【结论】本研究可为棉花叶绿素含量遥感估算提供技术参考。
暂无评论