研究生态系统服务之间的空间格局及其背后的驱动因素,对于强化生态管理及促进环境的可持续发展至关重要。以北京市为研究区域,应用InVEST模型对2000—2020年生境质量、碳储量、产水量以及土壤保持采用空间自相关、冷点/热点分析及双变量空间自相关分析方法研究生态系统服务的空间相关性、权衡与协同关系,并通过XGBoost-SHAP模型剖析影响生态系统服务的关键因素。结果表明:①生境质量的高值区域主要集中在地势较高且人类活动干扰较小的地区;碳储量呈现出西北高、东南低的空间分布态势;产水量的高值区集中在城镇区域;土壤保持的高值区域主要分布在西南部,而在北部则呈现零散分布状态。②全局空间自相关分析显示,4种生态系统服务的全局Moran’s I 指数均通过显著性检验,且均表现出显著的高值聚集特征。③生境质量、碳储量和土壤保持之间存在显著的协同关系,而产水量与生境质量、碳储量、土壤保持之间则表现出一定的权衡关系。④XGBoost回归模型在训练集与测试集上均展现出良好的预测性能,且训练集的预测效果优于测试集。SHAP模型解析表明,高程是影响4种生态系统服务的关键驱动因子,坡度显著影响生境质量、碳储量和土壤保持,人口密度主要作用于生境质量和产水量,而年降水量则对产水量和土壤保持具有重要影响。研究结果可为北京市生态系统服务空间格局优化及生态保护策略的制定提供科学支撑。
函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成...
详细信息
函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。
暂无评论